LAGRANGIAN GEOMETRY OF MATROIDS

被引:17
作者
Ardila, Federico [1 ,2 ]
Denham, Graham [3 ]
Huh, June [4 ,5 ]
机构
[1] San Francisco State Univ, Dept Math, 1600 Holloway Ave, San Francisco, CA 94132 USA
[2] Univ Los Andes, Dept Matemat, Cra 1 18A-12, Bogota, Colombia
[3] Univ Western Ontario, Dept Math, 1151 Richmond St, London, ON N6A 5B7, Canada
[4] Princeton Univ, Dept Math, Fine Hall,Washington Rd, Princeton, NJ 08544 USA
[5] Korea Inst Adv Study, Seoul, South Korea
基金
加拿大自然科学与工程研究理事会;
关键词
CHERN CLASSES; COMBINATORICS; ALGEBRA; RINGS;
D O I
10.1090/jams/1009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the conormal fan of a matroid M, which is a Lagrangian analog of the Bergman fan of M. We use the conormal fan to give a Lagrangian interpretation of the Chern–Schwartz–MacPherson cycle of M. This allows us to express the ℎ-vector of the broken circuit complex of M in terms of the intersection theory of the conormal fan of M. We also develop general tools for tropical Hodge theory to prove that the conormal fan satisfies Poincaré duality, the hard Lefschetz theorem, and the Hodge–Riemann relations. The Lagrangian interpretation of the Chern–Schwartz–MacPherson cycle of M, when combined with the Hodge–Riemann relations for the conormal fan of M, implies Brylawski’s and Dawson’s conjectures that the ℎ-vectors of the broken circuit complex and the independence complex of M are log-concave sequences. © 2023, American Mathematical Society. All rights reserved.
引用
收藏
页码:727 / 794
页数:68
相关论文
共 88 条
[1]   Torification and factorization of birational maps [J].
Abramovich, D ;
Karu, K ;
Matsuki, K ;
Lodarczyk, JLW .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (03) :531-572
[2]   Hodge theory for combinatorial geometries [J].
Adiprasito, Karim ;
Huh, June ;
Katz, Eric .
ANNALS OF MATHEMATICS, 2018, 188 (02) :381-452
[3]   The combinatorial theory of complexes [J].
Alexander, JW .
ANNALS OF MATHEMATICS, 1930, 31 :292-320
[4]   Differential forms with logarithmic poles and Chern-Schwartz-MacPherson classes of singular varieties [J].
Aluffi, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (07) :619-624
[5]  
Aluffi P, 2006, PURE APPL MATH Q, V2, P915
[6]   Grothendieck Classes and Chern Classes of Hyperplane Arrangements [J].
Aluffi, Paolo .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (08) :1873-1900
[7]  
Anari N, 2018, Arxiv, DOI arXiv:1811.01600
[8]  
[Anonymous], 1998, ERGEBNISSE MATH IHRE, DOI DOI 10.1007/978-1-4612-1700-8
[9]   The Bergman complex of a matroid and phylogenetic trees [J].
Ardila, F ;
Klivans, CJ .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (01) :38-49
[10]  
Ardila F., 2018, NOT AM MATH SOC, V65