Prediction of LDL in hypertriglyceridemic subjects using an innovative ensemble machine learning technique

被引:0
作者
Demirci, Ferhat [1 ,2 ]
Emec, Murat [3 ]
Doruk, Ozlem Gursoy [2 ,4 ]
Ozcanhan, Mehmet Hilal [5 ]
Ormen, Murat [4 ]
Akan, Pinar [2 ,4 ]
机构
[1] Dr Suat Seren Chest Dis & Thorac Surg Training &, Clin Biochem Lab, TR-35110 Izmir, Turkiye
[2] Dokuz Eylul Univ, Inst Hlth Sci, Dept Neurosci, Izmir, Turkiye
[3] Istanbul Univ, Fac Comp & Informat, Dept Comp Engn, Istanbul, Turkiye
[4] Dokuz Eylul Univ, Fac Med, Dept Biochem, Izmir, Turkiye
[5] Dokuz Eylul Univ, Fac Engn, Dept Comp Engn, Izmir, Turkiye
来源
TURKISH JOURNAL OF BIOCHEMISTRY-TURK BIYOKIMYA DERGISI | 2024年 / 48卷 / 06期
关键词
Artificial Intelligence; LDL; machine learning; medical care; prediction methods; DENSITY-LIPOPROTEIN CHOLESTEROL; ESC/EAS GUIDELINES; METAANALYSIS; MANAGEMENT; EQUATION; DISEASE;
D O I
10.1515/tjb-2023-0154
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Objectives Determining low-density lipoprotein (LDL) is a costly and time-consuming operation, but triglyceride value above 400 (TG>400) always requires LDL measurement. Obtaining a fast LDL forecast by accurate prediction can be valuable to experts. However, if a high error margin exists, LDL prediction can be critical and unusable. Our objective is LDL value and level prediction with an error less than low total acceptable error rate (% TEa).Methods Our present work used 6392 lab records to predict the patient LDL value using state-of-the-art Artificial Intelligence methods. The designed model, p-LDL-M, predicts LDL value and class with an overall average test score of 98.70 %, using custom, hyper-parameter-tuned Ensemble Machine Learning algorithm.Results The results show that using our innovative p-LDL-M is advisable for subjects with critical TG>400. Analysis proved that our model is positively affected by the Hopkins and Friedewald equations normally used for (TG <= 400). The conclusion follows that the test score performance of p-LDL-M using only (TG>400) is 7.72 % inferior to the same p-LDL-M, using Hopkins and Friedewald supported data. In addition, the test score performance of the NIH-Equ-2 for (TG>400) is much inferior to p-LDL-M prediction results.Conclusions In conclusion, obtaining an accurate and fast LDL value and level forecast for people with (TG>400) using our innovative p-LDL-M is highly recommendable.
引用
收藏
页码:641 / 652
页数:12
相关论文
共 34 条
[1]   User's guide to correlation coefficients [J].
Akoglu, Haldun .
TURKISH JOURNAL OF EMERGENCY MEDICINE, 2018, 18 (03) :91-93
[2]   Machine learning predictive models of LDL-C in the population of eastern India and its comparison with directly measured and calculated LDL-C [J].
Anudeep, P. P. ;
Kumari, Suchitra ;
Rajasimman, Aishvarya S. ;
Nayak, Saurav ;
Priyadarsini, Pooja .
ANNALS OF CLINICAL BIOCHEMISTRY, 2022, 59 (01) :76-86
[3]  
Atabi Fereshteh, 2020, Iran J Pathol, V15, P261, DOI [10.30699/ijp.2020.110379.2174, 10.30699/ijp.2020.110379.2174]
[4]   Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170 000 participants in 26 randomised trials [J].
Baigent, C. ;
Blackwell, L. ;
Emberson, J. ;
Holland, L. E. ;
Reith, C. ;
Bhala, N. ;
Peto, R. ;
Barnes, E. H. ;
Keech, A. ;
Simes, J. ;
Collins, R. .
LANCET, 2010, 376 (9753) :1670-1681
[5]   Is Machine Learning-derived Low-Density Lipoprotein Cholesterol estimation more reliable than standard closed form equations? Insights from a laboratory database by comparison with a direct homogeneous assay [J].
Barakett-Hamade, Vanda ;
Ghayad, Jean Pierre ;
Mchantaf, Gilbert ;
Sleilaty, Ghassan .
CLINICA CHIMICA ACTA, 2021, 519 :220-226
[6]   Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes [J].
Cannon, Christopher P. ;
Blazing, Michael A. ;
Giugliano, Robert P. ;
McCagg, Amy ;
White, Jennifer A. ;
Theroux, Pierre ;
Darius, Harald ;
Lewis, Basil S. ;
Ophuis, Ton Oude ;
Jukema, J. Wouter ;
De Ferrari, Gaetano M. ;
Ruzyllo, Witold ;
De Lucca, Paul ;
Im, KyungAh ;
Bohula, Erin A. ;
Reist, Craig ;
Wiviott, Stephen D. ;
Tershakovec, Andrew M. ;
Musliner, Thomas A. ;
Braunwald, Eugene ;
Califf, Robert M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (25) :2387-2397
[7]   2016 ESC/EAS Guidelines for the Management of Dyslipidaemias [J].
Catapano, Alberico L. ;
Graham, Ian ;
De Backer, Guy ;
Wiklund, Olov ;
Chapman, M. John ;
Drexel, Heinz ;
Hoes, Arno W. ;
Jennings, Catriona S. ;
Landmesser, Ulf ;
Pedersen, Terje R. ;
Reiner, Zeljko ;
Riccardi, Gabriele ;
Taskinen, Marja-Riita ;
Tokgozoglu, Lale ;
Monique, W. M. ;
Verschuren, W. M. Monique ;
Vlachopoulos, Charalambos ;
Wood, David A. ;
Luis Zamorano, Jose .
EUROPEAN HEART JOURNAL, 2016, 37 (39) :2999-+
[8]   Lipid-Related Markers and Cardiovascular Disease Prediction [J].
Di Angelantonio, Emanuele ;
Gao, Pei ;
Pennells, Lisa ;
Kaptoge, Stephen ;
Caslake, Muriel ;
Thompson, Alexander ;
Butterworth, Adam S. ;
Sarwar, Nadeem ;
Wormser, David ;
Saleheen, Danish ;
Ballantyne, Christie M. ;
Psaty, Bruce M. ;
Sundstrom, Johan ;
Ridker, Paul M. ;
Nagel, Dorothea ;
Gillum, Richard F. ;
Ford, Ian ;
Ducimetiere, Pierre ;
Kiechl, Stefan ;
Dullaart, Robin P. F. ;
Assmann, Gerd ;
D'Agostino, Ralph B. ;
Dagenais, Gilles R. ;
Cooper, Jackie A. ;
Kromhout, Daan ;
Onat, Altan ;
Tipping, Robert W. ;
Gomez-de-la-Camara, Agustin ;
Rosengren, Annika ;
Sutherland, Susan E. ;
Gallacher, John ;
Fowkes, F. Gerry R. ;
Casiglia, Edoardo ;
Hofman, Albert ;
Salomaa, Veikko ;
Barrett-Connor, Elizabeth ;
Clarke, Robert ;
Brunner, Eric ;
Jukema, J. Wouter ;
Simons, Leon A. ;
Sandhu, Manjinder ;
Wareham, Nicholas J. ;
Khaw, Kay-Tee ;
Kauhanen, Jussi ;
Salonen, Jukka T. ;
Howard, William J. ;
Nordestgaard, Borge G. ;
Wood, Angela M. ;
Thompson, Simon G. ;
Boekholdt, S. Matthijs .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2012, 307 (23) :2499-2506
[9]   A machine learning-based approach for low-density lipoprotein cholesterol calculation using age, and lipid parameters [J].
Fan, Gaowei ;
Zhang, Shunli ;
Wu, Qisheng ;
Song, Yan ;
Jia, Anqi ;
Li, Di ;
Yue, Yuhong ;
Wang, Qingtao .
CLINICA CHIMICA ACTA, 2022, 535 :53-60
[10]   Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel [J].
Ference, Brian A. ;
Ginsberg, Henry N. ;
Graham, Ian ;
Ray, Kausik K. ;
Packard, Chris J. ;
Bruckert, Eric ;
Hegele, Robert A. ;
Krauss, Ronald M. ;
Raal, Frederick J. ;
Schunkert, Heribert ;
Watts, Gerald F. ;
Boren, Jan ;
Fazio, Sergio ;
Horton, Jay D. ;
Masana, Luis ;
Nicholls, Stephen J. ;
Nordestgaard, Borge G. ;
van de Sluis, Bart ;
Taskinen, Marja-Riitta ;
Tokgozoglu, Lale ;
Landmesser, Ulf ;
Laufs, Ulrich ;
Wiklund, Olov ;
Stock, Jane K. ;
Chapman, M. John ;
Catapano, Alberico L. .
EUROPEAN HEART JOURNAL, 2017, 38 (32) :2459-2472