A note on endpoint Lp-continuity of wave operators for classical and higher order Schrodinger operators

被引:5
作者
Erdogan, M. Burak [1 ]
Green, William R. [2 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Rose Hulman Inst Technol, Dept Math, Terre Haute, IN 47803 USA
基金
美国国家科学基金会;
关键词
SCATTERING-THEORY; DIFFERENTIAL-OPERATORS;
D O I
10.1016/j.jde.2023.01.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the higher order Schrodinger operator H = (-Delta)(m) +V (x) inn dimensions with real-valued potential V when n > 2m, m E N. We adapt our recent results form > 1 to show that the wave operators are bounded on L-p(R-n) for the full the range 1 <= p <= infinity in both even and odd dimensions without assuming the potential is small. The approach used works without distinguishing even and odd cases, captures the endpoints p =1, infinity, and somehow simplifies the low energy argument even in the classical case of m = 1. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:144 / 161
页数:18
相关论文
共 18 条
[1]  
Agmon S., 1975, Ann. Scuola Norm. Sup. Pisa, Ser. IV, V2, P151
[2]   The Lp-continuity of wave operators for higher order Schrodinger operators [J].
Erdogan, M. Burak ;
Green, William R. .
ADVANCES IN MATHEMATICS, 2022, 404
[3]  
Erdogan MB, 2022, Arxiv, DOI arXiv:2206.12929
[4]   DECAY ESTIMATES FOR HIGHER-ORDER ELLIPTIC OPERATORS [J].
Feng, Hongliang ;
Soffer, Avy ;
Wu, Zhao ;
Yao, Xiaohua .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (04) :2805-2859
[5]  
Finco D., 2006, Journal of Mathematical Sciences, University of Tokyo, V13, P277
[6]   A counterexample to dispersive estimates for Schrodinger operators in higher dimensions [J].
Goldberg, Michael ;
Visan, Monica .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 266 (01) :211-238
[7]   ON THE Lp BOUNDEDNESS OF THE WAVE OPERATORS FOR FOURTH ORDER SCHRODINGER OPERATORS [J].
Goldberg, Michael ;
Green, William R. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (06) :4075-4092
[8]   EXISTENCE OF WAVE OPERATORS IN SCATTERING THEORY [J].
HORMANDER, L .
MATHEMATISCHE ZEITSCHRIFT, 1976, 146 (01) :69-91
[9]  
KURODA ST, 1973, J MATH SOC JPN, V25, P75
[10]  
KURODA ST, 1973, J MATH SOC JPN, V25, P222