Method of lines and Runge-Kutta method for solving delayed one dimensional transport equation

被引:2
作者
Karthick, S. [1 ]
Mahendran, R. [1 ]
Subburayan, V. [1 ]
机构
[1] SRM Inst Sci & Technol, Fac Engn & Technol, Dept Math, Kattankulathur 603203, Tamil Nadu, India
来源
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS | 2023年 / 28卷 / 03期
关键词
Stable method; Runge-Kutta method; transport equation; method of lines; DIFFERENTIAL-DIFFERENCE EQUATION; MODELS; STABILITY;
D O I
10.22436/jmcs.028.03.05
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we consider a delayed one dimensional transport equation. The method of lines with Runge-Kutta method is applied to solve the problem. It is proved that the present method is stable and convergence of order O(Delta t + h(-4)). Numerical examples are presented to illustrate the method presented in this article.
引用
收藏
页码:270 / 280
页数:11
相关论文
共 35 条
[1]   STABILITY PROPERTIES OF NUMERICAL-METHODS FOR SOLVING DELAY DIFFERENTIAL-EQUATIONS [J].
ALMUTIB, AN .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 10 (01) :71-79
[2]   COMPARISON PRINCIPLES FOR IMPULSIVE HYPERBOLIC-EQUATIONS OF FIRST-ORDER [J].
BAINOV, DD ;
KAMONT, Z ;
MINCHEV, E .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 60 (03) :379-388
[3]  
Banasiak J., 1998, J APPL MATH STOCH AN, V11, P9, DOI DOI 10.1155/S1048953398000021
[4]  
Bellen A.Zennaro., 2013, Numerical Methods for Delay Differential Equations
[5]   Endemic models with arbitrarily distributed periods of infection I: Fundamental properties of the model [J].
Feng, ZL ;
Thieme, HR .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 61 (03) :803-833
[6]  
Gopalsamy K., 2013, STABILITY OSCILLATIO, V74
[7]  
Hairer E., 1996, SOLVING ORDINARY DIF, V2, P1
[8]   An SIS epidemic model with variable population size and a delay [J].
Hethcote, HW ;
vandenDriessche, P .
JOURNAL OF MATHEMATICAL BIOLOGY, 1995, 34 (02) :177-194
[9]   Two SIS epidemiologic models with delays [J].
Hethcote, HW ;
van den Driessche, P .
JOURNAL OF MATHEMATICAL BIOLOGY, 2000, 40 (01) :3-26
[10]  
Holden A. V., 2013, MODELS STOCHASTIC AC, P1