Compressed channel estimation for RIS-assisted wireless systems: An efficient sparse recovery algorithm

被引:3
作者
Nouri, Nima [1 ]
Azizipour, Mohammad Javad [2 ]
机构
[1] KN Toosi Univ Technol, Dept Elect Engn, Tehran, Iran
[2] Univ Mazandaran, Fac Engn & Technol, Babolsar, Iran
关键词
Reconfigurable intelligent surface (RIS); Sparse recovery; Angular domain; Channel estimation; Greedy algorithms; RECONFIGURABLE INTELLIGENT SURFACES; MULTIUSER MASSIVE MIMO; SIGNAL RECOVERY; PART II; APPROXIMATION;
D O I
10.1016/j.phycom.2023.102153
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The reconfigurable intelligent surface (RIS) technology plays an essential role in controlling the propagation environment of wireless systems, specifically millimeter wave (mmWave) communication systems. However, a considerable number of pilot signals should be provided at the base station (BS) side for channel estimation due to the significant passive elements installed in the RIS. In this paper, we propose a novel sparse recovery algorithm by exploiting the row, common, and individual sparse elements of the channel in a new way. Furthermore, as an essential presumption of real environments, a sparse channel with unknown parameters is considered. Then a halting method is introduced to stop the proposed algorithm at the best time. The numerical results demonstrate that the proposed algorithm can alleviate the pilot overhead problem substantially while the mean square error (MSE) still approaches the performance bound.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 43 条
[1]   A burst-form CSI estimation approach for FDD massive MIMO systems [J].
Azizipour, Mohammad Javad ;
Mohamed-Pour, Kamal ;
Swindlehurst, A. Lee .
SIGNAL PROCESSING, 2019, 162 :106-114
[2]   Asymptotic Achievability of the Cramer-Rao Bound for Noisy Compressive Sampling [J].
Babadi, Behtash ;
Kalouptsidis, Nicholas ;
Tarokh, Vahid .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (03) :1233-1236
[3]   Estimation of Sparse MIMO Channels with Common Support [J].
Barbotin, Yann ;
Hormati, Ali ;
Rangan, Sundeep ;
Vetterli, Martin .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2012, 60 (12) :3705-3716
[4]   Application of Compressive Sensing to Sparse Channel Estimation [J].
Berger, Christian R. ;
Wang, Zhaohui ;
Huang, Jianzhong ;
Zhou, Shengli .
IEEE COMMUNICATIONS MAGAZINE, 2010, 48 (11) :164-174
[5]  
Bottou L., 2002, HDB BRAIN THEORY NEU, VSecond
[6]  
Chen J, 2019, ARXIV
[7]   Theoretical results on sparse representations of multiple-measurement vectors [J].
Chen, Jie ;
Huo, Xiaoming .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (12) :4634-4643
[8]   Adaptive Grouping Sparse Bayesian Learning for Channel Estimation in Non-Stationary Uplink Massive MIMO Systems [J].
Cheng, Xiantao ;
Xu, Ke ;
Sun, Jingjing ;
Li, Shaoqian .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2019, 18 (08) :4184-4198
[9]   Channel Estimation for FDD Multi-User Massive MIMO: A Variational Bayesian Inference-Based Approach [J].
Cheng, Xiantao ;
Sun, Jingjing ;
Li, Shaoqian .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2017, 16 (11) :7590-7602
[10]   Reconfigurable Intelligent Surface-Based Wireless Communications: Antenna Design, Prototyping, and Experimental Results [J].
Dai, Linglong ;
Wang, Bichai ;
Wang, Min ;
Yang, Xue ;
Tan, Jingbo ;
Bi, Shuangkaisheng ;
Xu, Shenheng ;
Yang, Fan ;
Chen, Zhi ;
Di Renzo, Marco ;
Chae, Chan-Byoung ;
Hanzo, Lajos .
IEEE ACCESS, 2020, 8 :45913-45923