Towards equivariant Yang-Mills theory

被引:1
|
作者
Bonechi, F. [1 ]
Cattaneo, A. S. [2 ]
Zabzine, M. [3 ]
机构
[1] INFN, Sez Firenze, Via G Sansone 1, I-50019 Florence, Italy
[2] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[3] Uppsala Univ, Dept Phys & Astron, Box 516, S-75120 Uppsala, Sweden
基金
瑞士国家科学基金会;
关键词
BV formalism; Gauge theories; Equivariant cohomology;
D O I
10.1016/j.geomphys.2023.104836
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study four dimensional gauge theories in the context of an equivariant extension of the Batalin-Vilkovisky (BV) formalism. We discuss the embedding of BV Yang-Mills (YM) theory into a larger BV theory and their relation. Partial integration in the equivariant BV setting (BV push-forward map) is performed explicitly for the abelian case. As result, we obtain a non-local homological generalization of the Cartan calculus and a non-local extension of the abelian YM BV action which satisfies the equivariant master equation.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:17
相关论文
共 50 条
  • [1] The Quantum Yang-Mills Theory
    Metaxas, Dimitrios
    UNIVERSE, 2023, 9 (09)
  • [2] Geometric foundations of classical Yang-Mills theory
    Catren, Gabriel
    STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2008, 39 (03): : 511 - 531
  • [3] The quasilocal degrees of freedom of Yang-Mills theory
    Gomes, Henrique
    Riello, Aldo
    SCIPOST PHYSICS, 2021, 10 (06):
  • [4] Thermal Yang-Mills theory in the Einstein universe
    Avramidi, Ivan G.
    Collopy, Samuel
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (37)
  • [5] A taxonomy of twists of supersymmetric Yang-Mills theory
    Elliott, Chris
    Safronov, Pavel
    Williams, Brian R.
    SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (04):
  • [6] A superspace formulation of Yang-Mills theory on sphere
    Banerjee, Rabin
    Deguchi, Shinichi
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (05)
  • [7] Extended N=1 super Yang-Mills theory
    Ferrari, Frank
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (11):
  • [8] BRST renormalization of the first order Yang-Mills theory
    Frenkel, J.
    Taylor, John C.
    ANNALS OF PHYSICS, 2017, 387 : 1 - 13
  • [9] Complex poles and spectral function of Yang-Mills theory
    Hayashi, Yui
    Kondo, Kei-Ichi
    PHYSICAL REVIEW D, 2019, 99 (07)
  • [10] Twisted supersymmetric 5D Yang-Mills theory and contact geometry
    Kallen, Johan
    Zabzine, Maxim
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (05):