Dosimetric Comparison between Single-energy Computed Tomography and Dual-energy Computed Tomography Relative to Stopping Power Estimation in Proton Therapy

被引:0
|
作者
Chirdchid, Thamonwan [1 ]
Ruangchan, Sirinya [2 ,3 ]
Sanghangthum, Taweap [1 ,2 ,4 ]
机构
[1] Chulalongkorn Univ, Dept Radiol, Fac Med, Bangkok, Thailand
[2] Her Royal Highness Princess Maha Chakri Sirindhor, Bangkok, Thailand
[3] Thai Red Cross Soc, King Chulalongkorn Mem Hosp, Div Radiat Oncol, Dept Radiol, Bangkok, Thailand
[4] Chulalongkorn Univ, Div Radiat Oncol, Dept Radiol, Fac Med, Bangkok, Thailand
关键词
Dual-energy computed tomography; proton therapy; single-energy computed tomography; stoichiometric method; DOSE CALCULATION; CT; CALIBRATION;
D O I
10.4103/jmp.jmp_27_23
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: The focus of this work was given on the relative stopping power (RSP) using the water equivalent thickness (WET) validation on tissue substitutes and real pig organs, as well as a dosimetric comparison of proton treatment plans between single-energy computed tomography (SECT) and dual-energy computed tomography (DECT)-based dose calculations. Materials and Methods: The CT calibration curve of SECT and DECT data was generated using the stoichiometric calibration method. WET measurement was performed for RSP validation using a Giraffe dosimeter (IBA dosimetry) in various substitute tissues (Gammex) and real pig tissues. The thorax (008A, CIRS) and head (731-HN, CIRS) phantoms were used to generate proton plans. The dosimetric evaluations of SECT and DECT-based plans were performed using the gamma analysis with 1%/1 mm and the dose-volume histograms (DVHs) comparison. Results: For RSP validation of substitute tissues, the largest percent WET difference between measurement and calculation was observed up to 17.9% (4 mm) in lung tissue, using SECT based. In real pig tissues, the average WET difference was 2.3% +/- 2.1% and 2.5% +/- 2.3% for SECT and DECT, respectively. The average gamma passed of about 92.1% for the lung and 96.8% for the head regions was reported. For the lung region, the DVH of the target dose was observed with a higher predicted dose in SECT than in DECT, while results in the head region were in good agreement for both SECT and DECT. Conclusion: The performed dosimetric comparison indicates the dose differences between SECT and DECT. The impact of the CT calibration curve is more pronounced for the thorax region.
引用
收藏
页码:292 / 297
页数:6
相关论文
共 50 条
  • [31] Dual-Energy Computed Tomography in Cardiac Imaging
    Boettcher, Benjamin
    Zsarnoczay, Emese
    Varga-Szemes, Akos
    Schoepf, Uwe Joseph
    Meinel, Felix G.
    van Assen, Marly
    De Cecco, Carlo N.
    RADIOLOGIC CLINICS OF NORTH AMERICA, 2023, 61 (06) : 995 - 1009
  • [32] Dual-energy Computed Tomography Applications in Uroradiology
    Jong Park
    Hersh Chandarana
    Michael Macari
    Alec J. Megibow
    Current Urology Reports, 2012, 13 : 55 - 62
  • [33] Dual-energy Computed Tomography Imaging of the Aorta
    Vlahos, Ioannis
    Godoy, Myrna C. B.
    Naidich, David P.
    JOURNAL OF THORACIC IMAGING, 2010, 25 (04) : 289 - 300
  • [34] Review of dual-energy computed tomography techniques
    Engler, Philip, 1600, (48):
  • [35] Dual-Energy Computed Tomography Technology and Challenges
    Krauss, Bernhard
    RADIOLOGIC CLINICS OF NORTH AMERICA, 2018, 56 (04) : 497 - +
  • [36] Dual-Energy Computed Tomography in Body Imaging
    Toia, Giuseppe V.
    Kim, Sooah
    Dighe, Manjiri K.
    Mileto, Achille
    SEMINARS IN ROENTGENOLOGY, 2018, 53 (02) : 132 - 146
  • [37] Pediatric Applications of Dual-Energy Computed Tomography
    Pena-Trujillo, Valeria
    Gallo-Bernal, Sebastian
    Tung, Erik L.
    Gee, Michael S.
    RADIOLOGIC CLINICS OF NORTH AMERICA, 2023, 61 (06) : 1069 - 1083
  • [38] Dual-Energy Computed Tomography : Technological Considerations
    Chung, Ryan
    Dane, Bari
    Yeh, Benjamin M.
    Morgan, Desiree E.
    Sahani, Dushyant V.
    Kambadakone, Avinash
    RADIOLOGIC CLINICS OF NORTH AMERICA, 2023, 61 (06) : 945 - 961
  • [39] Dual-Energy Computed Tomography Applications in Rheumatology
    Park, Eun Hae
    O'Donnell, Thomas
    Fritz, Jan
    RADIOLOGIC CLINICS OF NORTH AMERICA, 2024, 62 (05) : 849 - 863
  • [40] Vascular Applications of Dual-Energy Computed Tomography
    Rajiah, Prabhakar S.
    Kambadakone, Avinash
    Ananthakrishnan, Lakshmi
    Sutphin, Patrick
    Kalva, Sanjeeva P.
    RADIOLOGIC CLINICS OF NORTH AMERICA, 2023, 61 (06) : 1011 - 1029