Virtual Element Method for Control Constrained Dirichlet Boundary Control Problem Governed by the Diffusion Problem

被引:0
作者
Tushar, Jai [1 ]
Sau, Ramesh Chandra [2 ]
Kumar, Anil [3 ]
机构
[1] Monash Univ, Sch Math, Melbourne, Australia
[2] Chinese Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[3] BITS Pilani, Dept Math, KK Birla Goa Campus, Zuarinagar, Goa, India
关键词
Virtual element methods; PDE-constrained optimization; Boundary control; Discretize-then-optimize; Optimal control; Error estimates; Primal-dual algorithm; Numerical experiments; ERROR ANALYSIS; STOKES PROBLEM; DISCRETIZATION; APPROXIMATION;
D O I
10.1007/s10915-023-02410-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article develops a conforming virtual element method for a control-constrained Dirichlet boundary optimal control problem governed by the diffusion problem. An energy-based cost functional is used to approximate the control problem which results in a smooth control in contrast to the L-2(Gamma) approach which can lead to a control with discontinuities at the corners (Gong in SIAM J Numer Anal 60:450-474, 2022) . We use virtual element discretization of control, state, and adjoint variables along with a discretize-then-optimize approach to compute the optimal control is used to solve the problem. A new framework for the a priori error analysis is presented, which is optimal up to the regularity of the continuous solution. A primal-dual algorithm is used to solve the Dirichlet optimal control problem, and numerical experiments are conducted to illustrate the theoretical findings on general polygonal meshes.
引用
收藏
页数:26
相关论文
共 45 条
[1]   Equivalent projectors for virtual element methods [J].
Ahmad, B. ;
Alsaedi, A. ;
Brezzi, F. ;
Marini, L. D. ;
Russo, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) :376-391
[2]   Controlling the Kelvin force: basic strategies and applications to magnetic drug targeting [J].
Antil, Harbir ;
Nochetto, Ricardo H. ;
Venegas, Pablo .
OPTIMIZATION AND ENGINEERING, 2018, 19 (03) :559-589
[3]   A STREAM VIRTUAL ELEMENT FORMULATION OF THE STOKES PROBLEM ON POLYGONAL MESHES [J].
Antonietti, P. F. ;
da Veiga, L. Beirao ;
Mora, D. ;
Verani, M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (01) :386-404
[4]   QUADRATIC FINITE ELEMENTS WITH NON-MATCHING GRIDS FOR THE UNILATERAL BOUNDARY CONTACT [J].
Auliac, S. ;
Belhachmi, Z. ;
Ben Belgacem, F. ;
Hecht, F. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (04) :1185-1205
[5]  
Belhachmi Z, 2003, MATH COMPUT, V72, P83, DOI 10.1090/S0025-5718-01-01413-2
[6]   The virtual element method for discrete fracture network simulations [J].
Benedetto, Matias Fernando ;
Berrone, Stefano ;
Pieraccini, Sandra ;
Scialo, Stefano .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 280 :135-156
[7]  
Brenner S.C., 2007, The mathematical theory of finite element methods, V15
[8]   A C1 virtual element method for an elliptic distributed optimal control problem with pointwise state constraints [J].
Brenner, Susanne C. ;
Sung, Li-Yeng ;
Tan, Zhiyu .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (14) :2887-2906
[9]   Some Estimates for Virtual Element Methods [J].
Brenner, Susanne C. ;
Guan, Qingguang ;
Sung, Li-Yeng .
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2017, 17 (04) :553-574
[10]   Conforming and nonconforming virtual element methods for elliptic problems [J].
Cangiani, Andrea ;
Manzini, Gianmarco ;
Sutton, Oliver J. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (03) :1317-1354