Emerging Multiscale Porous Anodes toward Fast Charging Lithium-Ion Batteries

被引:54
作者
Zhu, Guanjia [1 ,2 ]
Luo, Dandan [1 ]
Chen, Xiaoyi [1 ]
Yang, Jianping [3 ]
Zhang, Haijiao [1 ]
机构
[1] Shanghai Univ, Inst Nanochem & Nanobiol, Shanghai 200444, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
[3] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
multiscale porous anodes; lithium-ion battery; fast charging; pore parameters; 3D macroporousanode; 3D hierarchical porous anode; aligned porousanodes; gradient porous anode; TEMPLATE-FREE SYNTHESIS; HIGH-ENERGY; ULTRAFAST-CHARGE; HOLLOW SPHERES; TORTUOSITY; DESIGN; ELECTRODES; PERFORMANCE; GRAPHENE; GRAPHITE;
D O I
10.1021/acsnano.3c07424
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the accelerated penetration of the global electric vehicle market, the demand for fast charging lithium-ion batteries (LIBs) that enable improvement of user driving efficiency and user experience is becoming increasingly significant. Robust ion/electron transport paths throughout the electrode have played a pivotal role in the progress of fast charging LIBs. Yet traditional graphite anodes lack fast ion transport channels, which suffer extremely elevated overpotential at ultrafast power outputs, resulting in lithium dendrite growth, capacity decay, and safety issues. In recent years, emergent multiscale porous anodes dedicated to building efficient ion transport channels on multiple scales offer opportunities for fast charging anodes. This review survey covers the recent advances of the emerging multiscale porous anodes for fast charging LIBs. It starts by clarifying how pore parameters such as porosity, tortuosity, and gradient affect the fast charging ability from an electrochemical kinetic perspective. We then present an overview of efforts to implement multiscale porous anodes at both material and electrode levels in diverse types of anode materials. Moreover, we critically evaluate the essential merits and limitations of several quintessential fast charging porous anodes from a practical viewpoint. Finally, we highlight the challenges and future prospects of multiscale porous fast charging anode design associated with materials and electrodes as well as crucial issues faced by the battery and management level.
引用
收藏
页码:20850 / 20874
页数:25
相关论文
共 177 条
[1]   Enabling fast charging - A battery technology gap assessment [J].
Ahmed, Shabbir ;
Bloom, Ira ;
Jansen, Andrew N. ;
Tanim, Tanvir ;
Dufek, Eric J. ;
Pesaran, Ahmad ;
Burnham, Andrew ;
Carlson, Richard B. ;
Dias, Fernando ;
Hardy, Keith ;
Keyser, Matthew ;
Kreuzer, Cory ;
Markel, Anthony ;
Meintz, Andrew ;
Michelbacher, Christopher ;
Mohanpurkar, Manish ;
Nelson, Paul A. ;
Robertson, David. C. ;
Scoffield, Don ;
Shirk, Matthew ;
Stephens, Thomas ;
Vijayagopal, Ram ;
Zhang, Jiucai .
JOURNAL OF POWER SOURCES, 2017, 367 :250-262
[2]   Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes [J].
An, Weili ;
Gao, Biao ;
Mei, Shixiong ;
Xiang, Ben ;
Fu, Jijiang ;
Wang, Lei ;
Zhang, Qiaobao ;
Chu, Paul K. ;
Huo, Kaifu .
NATURE COMMUNICATIONS, 2019, 10 (1)
[3]  
[Anonymous], Global EV data explorer
[4]   Operational strategy to stabilize lithium metal anodes by applied thermal gradient [J].
Atkinson, Robert W., III ;
Carter, Rachel ;
Love, Corey T. .
ENERGY STORAGE MATERIALS, 2019, 22 :18-28
[5]   Design of Battery Electrodes with Dual-Scale Porosity to Minimize Tortuosity and Maximize Performance [J].
Bae, Chang-Jun ;
Erdonmez, Can K. ;
Halloran, John W. ;
Chiang, Yet-Ming .
ADVANCED MATERIALS, 2013, 25 (09) :1254-1258
[6]   Electrochemically induced amorphous-to-rock-salt phase transformation in niobium oxide electrode for Li-ion batteries [J].
Barnes, Pete ;
Zuo, Yunxing ;
Dixon, Kiev ;
Hou, Dewen ;
Lee, Sungsik ;
Ma, Zhiyuan ;
Connell, Justin G. ;
Zhou, Hua ;
Deng, Changjian ;
Smith, Kassiopeia ;
Gabriel, Eric ;
Liu, Yuzi ;
Maryon, Olivia O. ;
Davis, Paul H. ;
Zhu, Haoyu ;
Du, Yingge ;
Qi, Ji ;
Zhu, Zhuoying ;
Chen, Chi ;
Zhu, Zihua ;
Zhou, Yadong ;
Simmonds, Paul J. ;
Briggs, Ariel E. ;
Schwartz, Darin ;
Ong, Shyue Ping ;
Xiong, Hui .
NATURE MATERIALS, 2022, 21 (07) :795-+
[7]  
Billaud J, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.97, 10.1038/nenergy.2016.97]
[8]   Exploring the influence of porosity and thickness on lithium-ion battery electrodes using an image-based model [J].
Boyce, Adam M. ;
Lu, Xuekun ;
Brett, Dan J. L. ;
Shearing, Paul R. .
JOURNAL OF POWER SOURCES, 2022, 542
[9]   Enabling fast charging - Infrastructure and economic considerations [J].
Burnham, Andrew ;
Dufek, Eric J. ;
Stephens, Thomas ;
Francfort, James ;
Michelbacher, Christopher ;
Carlson, Richard B. ;
Zhang, Jiucai ;
Vijayagopal, Ram ;
Dias, Fernando ;
Mohanpurkar, Manish ;
Scoffield, Don ;
Hardy, Keith ;
Shirk, Matthew ;
Hovsapian, Rob ;
Ahmed, Shabbir ;
Bloom, Ira ;
Jansen, Andrew N. ;
Keyser, Matthew ;
Kreuzer, Cory ;
Markel, Anthony ;
Meintz, Andrew ;
Pesaran, Ahmad ;
Tanim, Tanvir R. .
JOURNAL OF POWER SOURCES, 2017, 367 :237-249
[10]   A review on energy chemistry of fast-charging anodes [J].
Cai, Wenlong ;
Yao, Yu-Xing ;
Zhu, Gao-Long ;
Yan, Chong ;
Jiang, Li-Li ;
He, Chuanxin ;
Huang, Jia-Qi ;
Zhang, Qiang .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (12) :3806-3833