BOUNDED AND UNBOUNDED POSITIVE SOLUTIONS FOR SINGULAR φ-LAPLACIANS COUPLED SYSTEM ON THE HALF-LINE WITH FIRST-ORDER DERIVATIVE DEPENDENCE

被引:0
作者
Bachouche, Kamal [1 ,2 ]
Belal, Dhehbiya [3 ,4 ]
Benmeza, Abdelhamid [5 ]
机构
[1] Algiers Univ 1, Fac Sci, Dept Math, Algiers, Algeria
[2] Algiers Univ 1, Lab Math Anal & Applicat, Algiers, Algeria
[3] Adrar Univ, Fac Sci, Adrar, Algeria
[4] Ecole Normale Super, Lab Fixed Point Theory & Applicat, BP 92, Algiers 16050, Algeria
[5] Natl Higher Sch Math, Algiers, Algeria
来源
DIFFERENTIAL EQUATIONS & APPLICATIONS | 2023年 / 15卷 / 02期
关键词
phi-Laplacian; positive solution; singular boundary value problem; EXISTENCE;
D O I
10.7153/dea-2023-15-10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove by means of expansion and compression of a cone principle, the existence of a positive solution to the second order boundary value problem {-(phi(1)(u'))' (t) = a(1)(t)f(1)(t,u(t), v(t), u'(t), v'(t)) t > 0, -(phi(2)(v'))' (t) = a(2)(t)f(2)(t,u(t), v(t), u'(t), v'(t)) t > 0, u(0) = v(0) = (t ->+infinity)lim u'(t) = 0, (t ->+infinity)lim v'(t) = 0, where for i = 1,2, phi(i) : R -> R is an increasing homeomorphism such that phi(i)(0) = 0, a(i) is a measurable function with a(i)(t) > 0 a.e. t in some interval of (0,+infinity) and the nonlinearity f(i) : R+ x(0,+infinity)(4) -> R+ is continuous, and may exhibit singular at u+v= 0 and u' + v' = 0.
引用
收藏
页码:161 / 178
页数:18
相关论文
共 24 条
  • [1] Agarwal R.P., 1999, POSITIVE SOLUTIONS D
  • [2] Agarwal R.P., 2001, Infinite interval problems for differential, difference and integral equations
  • [3] Agarwal R.P., 1986, BOUND VALUE PROBL
  • [4] BACHOUCHE K., 2011, Adv. Dyn. Syst. Appl., V6, P159
  • [5] BENKACI-ALI N., 2012, Electron. J. Differential Equations, V126, P1
  • [6] BENMEZAI A., 2013, Int. J. Pure Appl. Math., V6, P51
  • [7] Corduneanu C., 1973, INTEGRAL EQUATIONS S
  • [8] de Sousa R, 2021, COMPUT APPL MATH, V40, DOI 10.1007/s40314-021-01556-w
  • [9] Djebali S, 2009, ELECTRON J QUAL THEO, P1
  • [10] Finizio N., 1988, ORDINARY DIFFERENTIA