Three segments distribution of gas diffusion layer porosity in a proton exchange membrane fuel cell

被引:2
|
作者
Yu, Rui Jiao [1 ,2 ]
Guo, Hang [1 ,2 ]
Chen, Hao [1 ,2 ]
Ye, Fang [1 ,2 ]
机构
[1] Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conser, Beijing 100124, Peoples R China
[2] Beijing Univ Technol, Coll Energy & Power Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Proton exchange membrane fuel cell; Gas diffusion layer; Porosity; Non -uniform distribution; AGGLOMERATE MODEL; WATER DISTRIBUTION; 2-PHASE TRANSPORT; CURRENT-DENSITY; PERFORMANCE; FLOW; PEMFC; GDL; COMPRESSION; GRADIENT;
D O I
10.1016/j.jelechem.2022.117086
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Porosity is the main parameter of gas diffusion layer and has a great influence on cell output performance. The electrochemical reaction rate is various in different region within the cell and the porous electrode may deform because of extrusion during assembly. So non-uniform distribution of porosity may be more similar to the real structure and can change cell performance. Thus, a 3D, two-phase agglomerate model is established to explore the optimal three segments distributions of porosity both in anode and cathode sides along three directions at different voltages using the optimization algorithm without constrains, and the reasons for these results at 0.2 V, 0.6 V and 0.8 V are also emphatically analyzed. The results indicate that the average of optimal porosity in three directions decreases with voltage increasing. With voltage increasing, optimal porosity increases from inlet to outlet, and the value increases along width direction. When cell voltage is 0.2 V, the reaction rate is mainly determined by reactant content, but it is influenced by charge transfer near inlet region. At 0.6 V, the rate is related to charge transmission, but it is affected by reactant content near outlet region.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Effects of porosity and porosity distribution in gas diffusion layer on the performances of proton exchange membrane fuel cell
    Jing, Shuang-Yan
    Sun, Z. Y.
    Yang, Liu
    Wang, Yang
    JOURNAL OF POWER SOURCES, 2024, 613
  • [2] Mass transport and performance of proton exchange membrane fuel cell considering the influence of porosity distribution of gas diffusion layer
    Liu, Yuwen
    Wu, Shiyu
    Qin, Yanzhou
    Zhang, Mengfei
    Liu, Xin
    Zhang, Junfeng
    Yin, Yan
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2022, 19 (14) : 1503 - 1511
  • [3] The effect of different gas diffusion layer porosity on proton exchange membrane fuel cells
    Turkmen, Anil Can
    Celik, Cenk
    FUEL, 2018, 222 : 465 - 474
  • [4] Study on transmission coefficients anisotropy of gas diffusion layer in a proton exchange membrane fuel cell
    Yu, Rui Jiao
    Guo, Hang
    Ye, Fang
    ELECTROCHIMICA ACTA, 2022, 414
  • [5] Effect of water distribution in gas diffusion layer on proton exchange membrane fuel cell performance
    Yue, Like
    Wang, Shixue
    Araki, Takuto
    Utaka, Yoshio
    Wang, Yulin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (03) : 2969 - 2977
  • [6] EFFECT OF NON-UNIFORMLY DISTRIBUTED POROSITY OF GAS DIFFUSION LAYERS ON MASS TRANSFER IN PROTON EXCHANGE MEMBRANE FUEL CELLS
    Yu, Rui Jiao
    Guo, Hang
    Ye, Fang
    JOURNAL OF POROUS MEDIA, 2023, 26 (01) : 47 - 62
  • [7] An ultrathin substrate-free gas diffusion layer for proton exchange membrane fuel cell
    Li, Yu-Ying
    Yao, Ting-Ting
    Zhang, Xiao-Fang
    Liu, Yu-Ting
    Wang, Xinyuan
    Wu, Gang-Ping
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 55 : 675 - 682
  • [8] Gas diffusion layer deformation and its effect on the transport characteristics and performance of proton exchange membrane fuel cell
    Zhou, Yibo
    Jiao, Kui
    Du, Qing
    Yin, Yan
    Li, Xianguo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (29) : 12891 - 12903
  • [9] A review on gas diffusion layer in proton exchange membrane fuel cell: Materials and manufacturing
    Luo, Chuan Xu
    Choo, Hui Leng
    Ahmad, Hafisoh
    Sivasankaran, Praveena Nair
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2024, 238 (6-7) : 785 - 796
  • [10] Segmented distribution of gas diffusion layer porosity and catalyst layer ionomer content in a polymer electrolyte membrane fuel cell
    Yu, Ruijiao
    Guo, Hang
    Chen, Hao
    Ye, Fang
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2024, 209 : 412 - 424