In situ generation of Li3N concentration gradient in 3D carbon-based lithium anodes towards highly-stable lithium metal batteries

被引:72
作者
Cao, Wenzhu [1 ]
Chen, Weimin [1 ]
Lu, Mi [1 ]
Zhang, Cheng [1 ]
Tian, Du [1 ]
Wang, Liang [2 ]
Yu, Faquan [1 ]
机构
[1] Wuhan Inst Technol, Hubei Key Lab Novel Reactor & Green Chem Technol, Hubei Engn Res Ctr Adv Fine Chem, Sch Chem Engn & Pharm,Key Lab Green Chem Proc,Mini, Wuhan 430205, Hubei, Peoples R China
[2] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2023年 / 76卷
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Li3N; Gradient; Three-dimensional host; Interphase; Lithium metal anode;
D O I
10.1016/j.jechem.2022.09.025
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The uncontrolled dendrite growth of lithium metal anodes (LMAs) caused by unstable anode/electrolyte interface and uneven lithium deposition have impeded the practical applications of lithium metal batter-ies (LMBs). Constructing a robust artificial solid electrolyte interphase (SEI) and regulating the lithium deposition behavior is an effective strategy to address these issues. Herein, a three-dimensional (3D) lithium anode with gradient Li3N has been in-situ fabricated on carbon-based framework by thermal dif-fusion method (denoted as CC/Li/Li3N). Density functional theory (DFT) calculations reveal that Li3N can effectively promote the transport of Li' due to the low energy barrier of Li' diffusion. As expected, the Li3N-rich conformal artificial SEI film can not only effectively stabilize the interface and avoid parasitic reactions, but also facilitate fast Li' transport across the SEI layer. The anode matrix with uniformly dis-tributed Li3N can enable homogenous deposition of Li, thus preventing Li dendrite propagation. Benefiting from these merits, the CC/Li/Li3N anode achieves ultralong-term cycling for >1000 h at a cur-rent density of 2 mA cm-2 and dendrite-free Li deposition at an ultrahigh rate of 20 mA cm-2. Moreover, the full cells coupled with LiFePO4 cathodes show extraordinary cycling stability for >300 cycles in liquid -electrolyte-based batteries and display a high-capacity retention of 96.7% after 100 cycles in solid-state cells, demonstrating the promising prospects for the practical applications of LMBs.(c) 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:648 / 656
页数:9
相关论文
共 31 条
[1]   Tortuosity Effects in Lithium-Metal Host Anodes [J].
Chen, Hao ;
Pei, Allen ;
Wan, Jiayu ;
Lin, Dingchang ;
Vila, Rafael ;
Wang, Hongxia ;
Mackanic, David ;
Steinruck, Hans-Georg ;
Huang, William ;
Li, Yuzhang ;
Yang, Ankun ;
Xie, Jin ;
Wu, Yecun ;
Wang, Hansen ;
Cui, Yi .
JOULE, 2020, 4 (04) :938-952
[2]  
Chen Z., 2022, NANO ENERGY, V93
[3]   Doctor-Blade Casting Fabrication of Ultrathin Li Metal Electrode for High-Energy-Density Batteries [J].
Du, Junmou ;
Wang, Wenyu ;
Wan, Mintao ;
Wang, Xiancheng ;
Li, Guocheng ;
Tan, Yucheng ;
Li, Chunhao ;
Tu, Shuibin ;
Sun, Yongming .
ADVANCED ENERGY MATERIALS, 2021, 11 (45)
[4]   Highly stable lithium metal anode with near-zero volume change enabled by capped 3D lithophilic framework [J].
Feng, Yangyang ;
Zhang, Chaofan ;
Jiao, Xingxing ;
Zhou, Zixuan ;
Song, Jiangxuan .
ENERGY STORAGE MATERIALS, 2020, 25 :172-179
[5]   Investigating the effect of a fluoroethylene carbonate additive on lithium deposition and the solid electrolyte interphase in lithium metal batteries usingin situNMR spectroscopy [J].
Gunnarsdottir, Anna B. ;
Vema, Sundeep ;
Menkin, Svetlana ;
Marbella, Lauren E. ;
Grey, Clare P. .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (30) :14975-14992
[6]   Electrical Conductivity Gradient Based on Heterofibrous Scaffolds for Stable Lithium-Metal Batteries [J].
Hong, Sang-Ho ;
Jung, Dae-Han ;
Kim, Jung-Hwan ;
Lee, Yong-Hyeok ;
Cho, Sung-Ju ;
Joo, Sang Hoon ;
Lee, Hyun-Wook ;
Lee, Ki-Suk ;
Lee, Sang-Young .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (14)
[7]   Unveiling the Advances of Nanostructure Design for Alloy-Type Potassium-Ion Battery Anodes via In Situ TEM [J].
Huang, Huawen ;
Wang, Jiuwu ;
Yang, Xianfeng ;
Hu, Renzong ;
Liu, Jinlong ;
Zhang, Lei ;
Zhu, Min .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (34) :14504-14510
[8]   Robust Cycling of Ultrathin Li Metal Enabled by Nitrate-Preplanted Li Powder Composite [J].
Jin, Dahee ;
Roh, Youngjoon ;
Jo, Taejin ;
Ryou, Myung-Hyun ;
Lee, Hongkyung ;
Lee, Yong Min .
ADVANCED ENERGY MATERIALS, 2021, 11 (18)
[9]   Rearrange SEI with artificial organic layer for stable lithium metal anode [J].
Kang, Danmiao ;
Hart, Noam ;
Koh, Joonho ;
Ma, Linge ;
Liang, Wenbin ;
Xu, Jing ;
Sardar, Saydul ;
Lemmon, John P. .
ENERGY STORAGE MATERIALS, 2020, 24 :618-625
[10]   Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries [J].
Kim, Mun Sek ;
Zhang, Zewen ;
Rudnicki, Paul E. ;
Yu, Zhiao ;
Wang, Jingyang ;
Wang, Hansen ;
Oyakhire, Solomon T. ;
Chen, Yuelang ;
Kim, Sang Cheol ;
Zhang, Wenbo ;
Boyle, David T. ;
Kong, Xian ;
Xu, Rong ;
Huang, Zhuojun ;
Huang, William ;
Bent, Stacey F. ;
Wang, Lin-Wang ;
Qin, Jian ;
Bao, Zhenan ;
Cui, Yi .
NATURE MATERIALS, 2022, 21 (04) :445-+