K-frames for Krein spaces

被引:5
作者
Mohammed, Atmani [1 ]
Samir, Kabbaj [1 ]
Bounader, Nourdine [1 ]
机构
[1] Univ Ibn Tofail, Dept Math, POB 133, Kenitra, Morocco
关键词
K-frames; K-dual Bessel sequences; Krein spaces; Non-regular Gram operator;
D O I
10.1007/s43034-022-00223-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this article is to give a definition of K-frames in Krein spaces. This definition is compatible with K-frames already known in Hilbert spaces and it generalizes them. We will characterize the K-frames by the synthesis operator and the frame operator, likewise to what is seen in the case of Hilbert spaces. In the rest of the article, we will set a definition of dual sequences and some results concerning this notion. Finally, we will demonstrate how to transfer K-frames for Hilbert spaces to Krein spaces arising from a possibly non-regular Gram operator.
引用
收藏
页数:20
相关论文
共 12 条
  • [1] [Anonymous], 2016, SeMA. J.
  • [2] Azizov T.Ya., 1989, LINEAR OPERATORS SPA
  • [3] Bognar J., 2012, Indefinite Inner Product Spaces
  • [4] Christensen O., 2016, INTRO FRAMES RIESZ B
  • [5] PAINLESS NONORTHOGONAL EXPANSIONS
    DAUBECHIES, I
    GROSSMANN, A
    MEYER, Y
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) : 1271 - 1283
  • [7] A CLASS OF NONHARMONIC FOURIER SERIES
    DUFFIN, RJ
    SCHAEFFER, AC
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 72 (MAR) : 341 - 366
  • [8] Esmeral K, 2015, BANACH J MATH ANAL, V9, P1
  • [9] Frames for operators
    Gavruta, Laura
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2012, 32 (01) : 139 - 144
  • [10] On frames for Krein spaces
    Giribet, J. I.
    Maestripieri, A.
    Martinez Peria, F.
    Massey, P. G.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (01) : 122 - 137