Study of CuSb bimetallic flow-through gas diffusion electrodes for efficient electrochemical CO2 reduction to CO

被引:5
|
作者
Mustafa, Azeem [1 ,2 ]
Lougou, Bachirou Guene [1 ,2 ,3 ]
Shuai, Yong [1 ,2 ]
Wang, Zhijiang [3 ]
ur-Rehman, Haseeb [4 ]
Razzaq, Samia [5 ]
Wang, Wei [1 ,2 ]
Pan, Ruming [1 ,2 ]
Li, Fanghua [6 ]
Han, Lei [2 ]
机构
[1] Harbin Inst Technol, Key Lab Aerosp Thermophys, MIIT, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Heilongjiang, Peoples R China
[3] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers &, Harbin 150001, Heilongjiang, Peoples R China
[4] Univ Engn & Technol, Mech Engn Dept, Taxila 47050, Pakistan
[5] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney 2006, Australia
[6] Harbin Inst Technol, Dept Environm Sci & Engn, Harbin 150090, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; electroreduction; LocalCO2; concentration; CuSb; Flow-through structure; Gas diffusion electrode; CARBON-DIOXIDE; INSIGHTS; NICKEL;
D O I
10.1016/j.jcis.2023.11.168
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical CO2 reduction (eCO2R) to industrially important feedstock has received great attention, but it faces different challenges. Among them, the poor CO2 mass transport due to low intrinsic CO2 solubility significantly limits the rate of reduction reactions, leading to lower catalytic performance; thereby, commercially relevant current densities can't be achieved. Moreover, the poor activity and selectivity of high-cost mono-metallic catalysts, including Cu, Zn, Ag, and Au, undermine the efficiency of eCO2R. Flow-through gas diffusion electrodes (FTGDE), a newly developed class of GDEs, can potentially solve the issue of poor CO2 mass transport because they directly feed the CO2 to the catalyst layer. In addition, abundant surface area, porous structure, and improved triple-phase interface make them an excellent candidate for extremely high rate eCO2R. Antimony, a low-cost and abundant metalloid, can be effectively tuned with Cu to produce useful products such as CO, formate, and C2H4 through eCO2R. Herein, a series of porous binary CuSb FTGDEs with different Sb compositions are fabricated for the electrocatalytic reduction of CO2 to CO. The results show that the catalytic performance of CuSb FTGDEs improved with increasing Sb content up to a certain threshold, beyond which it started to decrease. The CuSb FTGDE with 5.4 g of antimony demonstrated higher current density (206.4 mA/cm2) and faradaic efficiency (72.82 %) at relatively lower overpotentials. Compared to gas diffusion configuration, the poor catalytic activity and selectivity achieved by CuSb FTGDE in non-gas diffusion configuration signifies the importance of improved local CO2 concentration and improved triple-phase interface formation in GDE configuration. The several hours stable operation of CuSb FTGDEs during eCO2R demonstrates its potential for efficient electrocatalytic conversion applications.
引用
收藏
页码:363 / 372
页数:10
相关论文
共 50 条
  • [1] Modeling the Performance of A Flow-Through Gas Diffusion Electrode for Electrochemical Reduction of CO or CO2
    Chen, Yikai
    Lewis, Nathan S.
    Xiang, Chengxiang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (11)
  • [2] Zn-Cu bimetallic gas diffusion electrodes for electrochemical reduction of CO2 to ethylene
    Suliman, Munzir H.
    Al Naji, Hussain
    Usman, Muhammad
    ELECTROCHIMICA ACTA, 2024, 500
  • [3] CO poisoning of silver gas diffusion electrodes in electrochemical CO2 reduction
    Osiewacz, Jens
    Loeffelholz, Marco
    Weseler, Lydia
    Turek, Thomas
    ELECTROCHIMICA ACTA, 2023, 445
  • [4] Electrochemical Reduction of CO2: Effect of Convective CO2 Supply in Gas Diffusion Electrodes
    Duarte, Miguel
    De Mot, Bert
    Hereijgers, Jonas
    Breugelmans, Tom
    CHEMELECTROCHEM, 2019, 6 (22): : 5596 - 5602
  • [5] Analyzing the electrochemical reduction of CO and CO2 as reactants to C1 and C2 products on copper-based flow-through gas diffusion electrodes
    Mustafa, Azeem
    Lougou, Bachirou Guene
    Shuai, Yong
    Wang, Zhijiang
    Haseeb-ur-Rehman
    Razzaq, Samia
    Wang, Wei
    Pan, Ruming
    Li, Fanghua
    Han, Lei
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (06):
  • [6] Development and Utilization of Gas Diffusion Electrodes for the Electrochemical Reduction of CO2
    Kopljar, Dennis
    Inan, Andrea
    Vindayer, Patrick
    Scholz, Ralf
    Frangos, Nicolaos
    Wagner, Norbert
    Klemm, Elias
    CHEMIE INGENIEUR TECHNIK, 2015, 87 (06) : 855 - 859
  • [7] Probing Inside the Catalyst Layer on Gas Diffusion Electrodes in Electrochemical Reduction of CO and CO2
    Sun, Qiwen
    Wang, Jin
    Fu, Linke
    Ye, Yao
    Chang, Xiaoxia
    Xu, Bingjun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025,
  • [8] Cu-Pd Bimetallic Gas Diffusion Electrodes for Electrochemical Reduction of CO2 to C2+ Products
    Zhu, Chang
    Chen, Aohui
    Mao, Jianing
    Wu, Gangfeng
    Li, Shoujie
    Dong, Xiao
    Li, Guihua
    Jiang, Zheng
    Song, Yanfang
    Chen, Wei
    Wei, Wei
    SMALL STRUCTURES, 2023, 4 (05):
  • [9] Electrochemical CO2 Reduction: Tailoring Catalyst Layers in Gas Diffusion Electrodes
    Puring, Kai Junge
    Siegmund, Daniel
    Timm, Jana
    Moellenbruck, Florian
    Schemme, Steffen
    Marschall, Roland
    Apfel, Ulf-Peter
    ADVANCED SUSTAINABLE SYSTEMS, 2021, 5 (01)
  • [10] Mitigating mass transport limitations: hierarchical nanoporous gold flow-through electrodes for electrochemical CO2 reduction
    Qi, Zhen
    Hawks, Steven A.
    Horwood, Corie
    Biener, Juergen
    Biener, Monika M.
    MATERIALS ADVANCES, 2022, 3 (01): : 381 - 388