Influences of thermochemical non-equilibrium effects on Type III shock/ shock interaction at Mach 10

被引:1
|
作者
Li, Dengke [1 ]
Sun, Bo [1 ]
Dai, Chunliang [1 ]
Chen, Xiong [1 ]
Zhang, Xiang [1 ]
Man, Yanjin [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mech Engn, Nanjing 210094, Peoples R China
[2] Beijing Power Machinery Inst, Beijing 100074, Peoples R China
关键词
Type III shock/shock interaction; Thermochemical non-equilibrium effects; Shear layer; Impingement position; Peak of heat flux; INTERFERENCE; WAVE; DISSOCIATION;
D O I
10.1016/j.actaastro.2023.11.012
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Shock/shock interactions (SSIs) often lead to high thermal loads. To understand the influences of thermochemical non-equilibrium effects on the Type III SSI, four gas models based on the assumption of thermal perfect gas (TPG), thermal equilibrium chemical non-equilibrium gas (TECNG), thermal non-equilibrium chemical frozen gas (TNCFG), and thermochemical non-equilibrium gas (TCNEG) are employed to simulate the Type III SSI at Mach 10. The intersection of incident shock and bow shock is determined by dimensionless intercept of 0.05 and 0.1. It is found that the chemical non-equilibrium effects significantly lift up the impingement position of shear layer by reducing the standoff distance of bow shock. As a result, the peaks of wall pressure and heat flux calculated by TECNG and TCNEG model are higher than TPG and TNCFG model, respectively. Type IIIa SSI occur in the flows calculated by the TECNG and TCNEG model for the case with a dimensionless intercept of 0.1. The peaks of wall pressure and heat flux calculated by TECNG model are both over four times higher than those of TPG model. The thermal non-equilibrium effects slightly increase the standoff distance of bow shock and lower the impingement position of shear layer. In addition, the thermal non-equilibrium reduces the angle to the horizontal direction of shear layer by increasing the specific heat ratio.
引用
收藏
页码:553 / 566
页数:14
相关论文
共 50 条
  • [1] Thermochemical non-equilibrium effects on hypersonic shock wave/turbulent boundary-layer interaction
    Jiang, Hao
    Liu, Jun
    Luo, Shichao
    Huang, Wei
    Wang, Junyuan
    Liu, Meikuan
    ACTA ASTRONAUTICA, 2022, 192 : 1 - 14
  • [2] Numerical investigation of thermochemical non-equilibrium effects in Mach 10 scramjet nozzle
    Wang, J. P.
    Zhuo, C. F.
    Dai, C. L.
    Sun, B.
    AERONAUTICAL JOURNAL, 2024, 128 (1329): : 2707 - 2724
  • [3] Numerical investigation of thermochemical non-equilibrium effects in Mach 10 scramjet nozzle
    Wang, J.P.
    Zhuo, C.F.
    Dai, C.L.
    Sun, B.
    Aeronautical Journal, 2024,
  • [4] Thermochemical non-equilibrium effects on hypersonic wavecatcher intake at Mach 12
    Zuo, Feng-Yuan
    Molder, Sannu
    Hu, Shu-Ling
    ACTA ASTRONAUTICA, 2022, 198 : 56 - 68
  • [5] Viscous effects on morphological and thermodynamic non-equilibrium characterizations of shock-bubble interaction
    Zhang, Dejia
    Xu, Aiguo
    Gan, Yanbiao
    Zhang, Yudong
    Song, Jiahui
    Li, Yingjun
    PHYSICS OF FLUIDS, 2023, 35 (10)
  • [6] INTERACTION OF SHOCK WAVES WITH AREA OF THE NON-EQUILIBRIUM IN VIBRATIONALLY EXCITED GAS
    Zavershinsky, D. I.
    Makaryan, V. G.
    Porfirev, D. P.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2012, (03): : 203 - 207
  • [7] Shock profiles for non-equilibrium radiating gases
    Lin, Chunjin
    Couombel, Jean-Francois
    Goudon, Thierry
    PHYSICA D-NONLINEAR PHENOMENA, 2006, 218 (01) : 83 - 94
  • [8] Radiation calculation in non-equilibrium shock layer
    Dubois, J
    International Workshop on Radiation of High Temperature Gases in Atmospheric Entry, Pt 2, Proceedings, 2005, 583 : 41 - 46
  • [9] Instrumentation on Impact Shock Study of Polymers and Possibility of Non-equilibrium Shock Hugoniot
    Nagayama, Kunihito
    Mori, Yasuhito
    THERMEC 2009, PTS 1-4, 2010, 638-642 : 1059 - +
  • [10] Shock interactions in inviscid air and CO2-N2 flows in thermochemical non-equilibrium
    Garbacz, C.
    Maier, W. T.
    Scoggins, J. B.
    Economon, T. D.
    Magin, T.
    Alonso, J. J.
    Fossati, M.
    SHOCK WAVES, 2021, 31 (03) : 239 - 253