We present a numerical algorithm for computing the spectrum of the Laplace-de Rham operator on Calabi-Yau manifolds, extending previous work on the scalar Laplace operator. Using an approximate Calabi-Yau metric as input, we compute the eigenvalues and eigenforms of the Laplace operator acting on (p, q)-forms for the example of the Fermat quintic threefold. We provide a check of our algorithm by computing the spectrum of (p, q)-eigenforms on P3.(c) 2023 Elsevier B.V. All rights reserved.
机构:
Harvard Univ, Dept Math, Cambridge, MA 02138 USA
Natl Taiwan Univ, Taida Inst Math Sci, Taipei 10764, TaiwanHarvard Univ, Dept Math, Cambridge, MA 02138 USA
Gao, Peng
He, Yang-Hui
论文数: 0引用数: 0
h-index: 0
机构:
City Univ London, Dept Math, London EC1V 0HB, England
Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China
Univ Oxford Merton Coll, Oxford OX1 4JD, EnglandHarvard Univ, Dept Math, Cambridge, MA 02138 USA
He, Yang-Hui
Yau, Shing-Tung
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Dept Math, Cambridge, MA 02138 USA
Natl Taiwan Univ, Taida Inst Math Sci, Taipei 10764, TaiwanHarvard Univ, Dept Math, Cambridge, MA 02138 USA
机构:
Univ Penn, Dept Math, David Rittenhouse Lab, 209 South 33rd St, Philadelphia, PA 19104 USAUniv Penn, Dept Math, David Rittenhouse Lab, 209 South 33rd St, Philadelphia, PA 19104 USA
Donagi, Ron
Macerato, Mark
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Dept Math, Evans Hall, Berkeley, CA 94720 USAUniv Penn, Dept Math, David Rittenhouse Lab, 209 South 33rd St, Philadelphia, PA 19104 USA
Macerato, Mark
Sharpe, Eric
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Tech, Dept Phys MC 0435, 850 Campus Dr, Blacksburg, VA 24061 USAUniv Penn, Dept Math, David Rittenhouse Lab, 209 South 33rd St, Philadelphia, PA 19104 USA