Model Life Extension for Continuous Process: Non-Invasive Correction of Model-Plant Mismatch with Regularization

被引:0
|
作者
Kono, Yohei [1 ]
Koizumi, Minoru [2 ]
机构
[1] Hitachi Ltd, DX Engn Res Dept, Ctr Digital Serv, 292 Yoshida Cho,Totsuka Ku, Yokohama, Japan
[2] Hitachi Ltd, Digital Architecture Res Dept, Ctr Technol Innovat, 292 Yoshida Cho,Totsuka Ku, Yokohama, Japan
来源
2023 EUROPEAN CONTROL CONFERENCE, ECC | 2023年
关键词
IDENTIFICATION;
D O I
10.23919/ECC57647.2023.10178279
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In continuous process plants controlled by model predictive control, model-plant mismatch (MPM), due to the aging of processes, causes degradation of control performance. We propose a concept called Model Life Extension (MLE) and its implementation to mitigate this degradation in a non-invasive manner. The purpose of MLE is to continually update (re-identify) process models by using routine operating data on the assumption that the timescale of aging is much larger than the interval of excitation of reference signals. We implemented MLE by estimating MPM via L-1 regularized regression and by finding an optimal regularization parameter via crossvalidation and showed through numerical experiments that an optimal parameter can exist and be found by cross-validation for a pilot-scale distillation column. We then constructed the updated model based on the found parameter to demonstrate the possibility of correcting static-gain mismatch and transport-delay mismatch without injecting excitation signals to process inputs.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] CONTROLLER DESIGNS FOR MODEL-PLANT PARAMETER MISMATCH
    ROMAGNOLI, JA
    KARIM, MN
    AGAMENNONI, OE
    DESAGES, A
    IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1988, 135 (02): : 157 - 164
  • [2] Detection of model-plant mismatch in MPC applications
    Badwe, Abhijit S.
    Gudi, Ravindra D.
    Patwardhan, Rohit S.
    Shah, Sirish L.
    Patwardhan, Sachin C.
    JOURNAL OF PROCESS CONTROL, 2009, 19 (08) : 1305 - 1313
  • [3] Performance Diagnosis of MPC with Model-Plant Mismatch
    Wang, Yuhong
    Wang, Xuejian
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 78 - 82
  • [4] Simultaneous model identification and optimization in presence of model-plant mismatch
    Mandur, Jasdeep S.
    Budman, Hector M.
    CHEMICAL ENGINEERING SCIENCE, 2015, 129 : 106 - 115
  • [5] Model-Plant Mismatch in Fractional Order Model Predictive Control
    Domek, Stefan
    THEORETICAL DEVELOPMENTS AND APPLICATIONS OF NON-INTEGER ORDER SYSTEMS, 2016, 357 : 281 - 291
  • [6] Model-Plant Mismatch Compensation Using Reinforcement Learning
    Koryakovskiy, Ivan
    Kudruss, Manuel
    Vallery, Heike
    Babuska, Robert
    Caarls, Wouter
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (03): : 2471 - 2477
  • [7] Detecting Model-Plant Mismatch without External Excitation
    Yousefi, M.
    Lu, Q.
    Gopaluni, R. B.
    Loewen, P. D.
    Forbes, M. G.
    Dumont, G. A.
    Backstrom, J.
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 4976 - 4981
  • [8] Model-Plant Mismatch Detection with Support Vector Machines
    Lu, Qiugang
    Gopaluni, R. Bhushan
    Forbes, Michael G.
    Loewen, Philip D.
    Backstrom, Johan U.
    Dumont, Guy A.
    IFAC PAPERSONLINE, 2017, 50 (01): : 7993 - 7998
  • [9] A Novel Algorithm for Model-Plant Mismatch Detection for Model Predictive Controllers
    Tsai, Y.
    Gopaluni, R. B.
    Marshman, D.
    Chmelyk, T.
    IFAC PAPERSONLINE, 2015, 48 (08): : 746 - 752
  • [10] Quantifying the impact of model-plant mismatch on controller performance
    Badwe, Abhijit S.
    Patwardhan, Rohit S.
    Shah, Sirish L.
    Patwardhan, Sachin C.
    Gudi, Ravindra D.
    JOURNAL OF PROCESS CONTROL, 2010, 20 (04) : 408 - 425