CT-based deep multi-label learning prediction model for outcome in patients with oropharyngeal squamous cell carcinoma

被引:10
作者
Ma, Baoqiang [1 ,7 ]
Guo, Jiapan [1 ,2 ,3 ]
Zhai, Tian-Tian [4 ]
van der Schaaf, Arjen [1 ]
Steenbakkers, Roel J. H. M. [1 ]
van Dijk, Lisanne V. [1 ,5 ]
Both, Stefan [1 ]
Langendijk, Johannes A. [1 ]
Zhang, Weichuan [6 ]
Qiu, Bingjiang [1 ,2 ]
van Ooijen, Peter M. A. [1 ,2 ]
Sijtsema, Nanna M. [1 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Dept Radiat Oncol, Groningen, Netherlands
[2] Univ Groningen, Univ Med Ctr Groningen, Data Sci Ctr Hlth DASH, Machine Learning Lab, Groningen, Netherlands
[3] Univ Groningen, Bernoulli Inst Math, Comp Sci & Artificial Intelligence, Groningen, Netherlands
[4] Shantou Univ, Dept Radiat Oncol, Canc Hosp, Med Coll, Shantou, Peoples R China
[5] Univ Texas MD Anderson Canc Ctr, Dept Radiat Oncol, Houston, TX USA
[6] Griffith Univ, Inst Integrated & Intelligent Syst, Nathan, Qld, Australia
[7] Univ Groningen, Dept Radiat Oncol, UMCG, Fonteinstr 18,Hanzepl 1, NL-9713 GZ Groningen, Netherlands
关键词
computed tomography; deep learning; head and neck cancer; multi-label learning; oropharyngeal squamous cell carcinoma; outcome prediction; CANCER; SURVIVAL; VALIDATION; BIOMARKERS; HEAD;
D O I
10.1002/mp.16465
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundPersonalized treatment is increasingly required for oropharyngeal squamous cell carcinoma (OPSCC) patients due to emerging new cancer subtypes and treatment options. Outcome prediction model can help identify low or high-risk patients who may be suitable to receive de-escalation or intensified treatment approaches. PurposeTo develop a deep learning (DL)-based model for predicting multiple and associated efficacy endpoints in OPSCC patients based on computed tomography (CT). MethodsTwo patient cohorts were used in this study: a development cohort consisting of 524 OPSCC patients (70% for training and 30% for independent testing) and an external test cohort of 396 patients. Pre-treatment CT-scans with the gross primary tumor volume contours (GTVt) and clinical parameters were available to predict endpoints, including 2-year local control (LC), regional control (RC), locoregional control (LRC), distant metastasis-free survival (DMFS), disease-specific survival (DSS), overall survival (OS), and disease-free survival (DFS). We proposed DL outcome prediction models with the multi-label learning (MLL) strategy that integrates the associations of different endpoints based on clinical factors and CT-scans. ResultsThe multi-label learning models outperformed the models that were developed based on a single endpoint for all endpoints especially with high AUCs >= 0.80 for 2-year RC, DMFS, DSS, OS, and DFS in the internal independent test set and for all endpoints except 2-year LRC in the external test set. Furthermore, with the models developed, patients could be stratified into high and low-risk groups that were significantly different for all endpoints in the internal test set and for all endpoints except DMFS in the external test set. ConclusionMLL models demonstrated better discriminative ability for all 2-year efficacy endpoints than single outcome models in the internal test and for all endpoints except LRC in the external set.
引用
收藏
页码:6190 / 6200
页数:11
相关论文
共 47 条
[1]   From Handcrafted to Deep-Learning-Based Cancer Radiomics Challenges and opportunities [J].
Afshar, Parnian ;
Mohammadi, Arash ;
Plataniotis, Konstantinos N. ;
Oikonomou, Anastasia ;
Benali, Habib .
IEEE SIGNAL PROCESSING MAGAZINE, 2019, 36 (04) :132-160
[2]   The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging [J].
Amin, Mahul B. ;
Greene, Frederick L. ;
Edge, Stephen B. ;
Compton, Carolyn C. ;
Gershenwald, Jeffrey E. ;
Brookland, Robert K. ;
Meyer, Laura ;
Gress, Donna M. ;
Byrd, David R. ;
Winchester, David P. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2017, 67 (02) :93-99
[3]  
Andrearczyk Vincent, 2022, Head and Neck Tumor Segmentation and Outcome Prediction: Second Challenge, HECKTOR 2021, Held in Conjunction with MICCAI 2021, Proceedings. Lecture Notes in Computer Science (13209), P1, DOI 10.1007/978-3-030-98253-9_1
[4]   Human Papillomavirus and Survival of Patients with Oropharyngeal Cancer [J].
Ang, K. Kian ;
Harris, Jonathan ;
Wheeler, Richard ;
Weber, Randal ;
Rosenthal, David I. ;
Nguyen-Tan, Phuc Felix ;
Westra, William H. ;
Chung, Christine H. ;
Jordan, Richard C. ;
Lu, Charles ;
Kim, Harold ;
Axelrod, Rita ;
Silverman, C. Craig ;
Redmond, Kevin P. ;
Gillison, Maura L. .
NEW ENGLAND JOURNAL OF MEDICINE, 2010, 363 (01) :24-35
[5]   Magnetic Resonance-based Response Assessment and Dose Adaptation in Human Papilloma Virus Positive Tumors of the Oropharynx treated with Radiotherapy (MR-ADAPTOR): An R-IDEAL stage 2a-2b/Bayesian phase II trial [J].
Bahig, Houda ;
Yuan, Ying ;
Mohamed, Abdallah S. R. ;
Brock, Kristy K. ;
Ng, Sweet Ping ;
Wang, Jihong ;
Ding, Yao ;
Hutcheson, Kate ;
McCulloch, Molly ;
Balter, Peter A. ;
Lai, Stephen Y. ;
Al-Mamgani, Abrahim ;
Sonke, Jan-Jakob ;
van der Heide, Uulke A. ;
Nutting, Christopher ;
Li, X. Allen ;
Robbins, Jared ;
Awan, Mussadiq ;
Karam, Irene ;
Newbold, Katherine ;
Harrington, Kevin ;
Oelfke, Uwe ;
Bhide, Shreerang ;
Philippens, Marielle E. P. ;
Terhaard, Chris H. J. ;
McPartlin, Andrew J. ;
Blanchard, Pierre ;
Garden, Adam S. ;
Rosenthal, David I. ;
Gunn, Gary B. ;
Phan, Jack ;
Cazoulat, Guillaume ;
Aristophanous, Michalis ;
McSpadden, Kelli K. ;
Garcia, John A. ;
van den Berg, Cornelis A. T. ;
Raaijmakers, Cornelis P. J. ;
Kerkmeijer, Linda ;
Doornaert, Patricia ;
Blinde, Sanne ;
Frank, Steven J. ;
Fuller, Clifton D. .
CLINICAL AND TRANSLATIONAL RADIATION ONCOLOGY, 2018, 13 :19-23
[6]   Improved outcome prediction of oropharyngeal cancer by combining clinical and MRI features in machine learning models [J].
Bos, Paula ;
van den Brekel, Michiel W. M. ;
Gouw, Zeno A. R. ;
Al-Mamgani, Abrahim ;
Taghavi, Marjaneh ;
Waktola, Selam ;
Aerts, Hugo J. W. L. ;
Castelijns, Jonas A. ;
Beets-Tan, Regina G. H. ;
Jasperse, Bas .
EUROPEAN JOURNAL OF RADIOLOGY, 2021, 139
[7]  
Bourigault E., 2021, ARXIV PREPR ARXIV211
[8]   20 pack-year smoking history as strongest smoking metric predictive of HPV-positive oropharyngeal cancer outcomes [J].
Chen, Stephanie Y. ;
Last, Aisling ;
Ettyreddy, Abhinav ;
Kallogjeri, Dorina ;
Wahle, Benjamin ;
Chidambaram, Smrithi ;
Mazul, Angela ;
Thorstad, Wade ;
Jackson, Ryan S. ;
Zevallos, Jose P. ;
Pipkorn, Patrik .
AMERICAN JOURNAL OF OTOLARYNGOLOGY, 2021, 42 (03)
[9]   Deep Learning for Fully Automated Prediction of Overall Survival in Patients with Oropharyngeal Cancer Using FDG-PET Imaging [J].
Cheng, Nai-Ming ;
Yao, Jiawen ;
Cai, Jinzheng ;
Ye, Xianghua ;
Zhao, Shilin ;
Zhao, Kui ;
Zhou, Wenlan ;
Nogues, Isabella ;
Huo, Yuankai ;
Liao, Chun-Ta ;
Wang, Hung-Ming ;
Lin, Chien-Yu ;
Lee, Li-Yu ;
Xiao, Jing ;
Lu, Le ;
Zhang, Ling ;
Yen, Tzu-Chen .
CLINICAL CANCER RESEARCH, 2021, 27 (14) :3948-3959
[10]   Five-year survival and prognostic factors for oropharyngeal squamous cell carcinoma: retrospective cohort of a cancer center [J].
de Franca, Gloria Maria ;
da Silva, Weslay Rodrigues ;
Santos Medeiros, Cristianne Kalinne ;
Felipe Junior, Joaquim ;
Santos, Edilmar de Moura ;
Galvao, Hebel Cavalcanti .
ORAL AND MAXILLOFACIAL SURGERY-HEIDELBERG, 2022, 26 (02) :261-269