Personalized Federated Learning on Non-IID Data via Group-based Meta-learning

被引:44
作者
Yang, Lei [1 ]
Huang, Jiaming [1 ]
Lin, Wanyu [2 ]
Cao, Jiannong [2 ]
机构
[1] South China Univ Technol, Guangzhou, Peoples R China
[2] Hong Kong Polytech Univ, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Federated learning; neural networks; clustering methods; meta learning;
D O I
10.1145/3558005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Personalized federated learning (PFL) has emerged as a paradigm to provide a personalized model that can fit the local data distribution of each client. One natural choice for PFL is to leverage the fast adaptation capability of meta-learning, where it first obtains a single global model, and each client achieves a personalized model by fine-tuning the global one with its local data. However, existing meta-learning-based approaches implicitly assume that the data distribution among different clients is similar, which may not be applicable due to the property of data heterogeneity in federated learning. In this work, we propose a Group-based FederatedMeta-Learning framework, called G-FML, which adaptively divides the clients into groups based on the similarity of their data distribution, and the personalized models are obtained with meta-learning within each group. In particular, we develop a simple yet effective grouping mechanism to adaptively partition the clients into multiple groups. Our mechanism ensures that each group is formed by the clients with similar data distribution such that the group-wisemeta-model can achieve "personalization" at large. By doing so, our framework can be generalized to a highly heterogeneous environment. We evaluate the effectiveness of our proposed G-FML framework on three heterogeneous benchmarking datasets. The experimental results show that our framework improves the model accuracy by up to 13.15% relative to the state-of-the-art federated meta-learning.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Ensemble Federated Learning With Non-IID Data in Wireless Networks
    Zhao, Zhongyuan
    Wang, Jingyi
    Hong, Wei
    Quek, Tony Q. S.
    Ding, Zhiguo
    Peng, Mugen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (04) : 3557 - 3571
  • [32] Advanced Optimization Techniques for Federated Learning on Non-IID Data
    Efthymiadis, Filippos
    Karras, Aristeidis
    Karras, Christos
    Sioutas, Spyros
    FUTURE INTERNET, 2024, 16 (10)
  • [33] FedKT: Federated learning with knowledge transfer for non-IID data
    Mao, Wenjie
    Yu, Bin
    Zhang, Chen
    Qin, A. K.
    Xie, Yu
    PATTERN RECOGNITION, 2025, 159
  • [34] Data independent warmup scheme for non-IID federated learning
    Arafeh, Mohamad
    Ould-Slimane, Hakima
    Otrok, Hadi
    Mourad, Azzam
    Talhi, Chamseddine
    Damiani, Ernesto
    INFORMATION SCIENCES, 2023, 623 : 342 - 360
  • [35] FedPD: A Federated Learning Framework With Adaptivity to Non-IID Data
    Zhang, Xinwei
    Hong, Mingyi
    Dhople, Sairaj
    Yin, Wotao
    Liu, Yang
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 (69) : 6055 - 6070
  • [36] FedProc: Prototypical contrastive federated learning on non-IID data
    Mu, Xutong
    Shen, Yulong
    Cheng, Ke
    Geng, Xueli
    Fu, Jiaxuan
    Zhang, Tao
    Zhang, Zhiwei
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 143 : 93 - 104
  • [37] Privacy-Enhanced Federated Learning for Non-IID Data
    Tan, Qingjie
    Wu, Shuhui
    Tao, Yuanhong
    MATHEMATICS, 2023, 11 (19)
  • [38] Adaptive Federated Learning on Non-IID Data With Resource Constraint
    Zhang, Jie
    Guo, Song
    Qu, Zhihao
    Zeng, Deze
    Zhan, Yufeng
    Liu, Qifeng
    Akerkar, Rajendra
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (07) : 1655 - 1667
  • [39] Federated learning on non-IID and globally long-tailed data via meta re-weighting networks
    Lu, Yang
    Qian, Pinxin
    Yan, Shanshan
    Huang, Gang
    Tang, Yuan Yan
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2024, 22 (03)
  • [40] Personalized Federated Learning with Contextual Modulation and Meta-Learning
    Vettoruzzo, Anna
    Bouguelia, Mohamed-Rafik
    Rognvaldsson, Thorsteinn
    PROCEEDINGS OF THE 2024 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2024, : 842 - 850