Personalized Federated Learning on Non-IID Data via Group-based Meta-learning

被引:43
|
作者
Yang, Lei [1 ]
Huang, Jiaming [1 ]
Lin, Wanyu [2 ]
Cao, Jiannong [2 ]
机构
[1] South China Univ Technol, Guangzhou, Peoples R China
[2] Hong Kong Polytech Univ, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Federated learning; neural networks; clustering methods; meta learning;
D O I
10.1145/3558005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Personalized federated learning (PFL) has emerged as a paradigm to provide a personalized model that can fit the local data distribution of each client. One natural choice for PFL is to leverage the fast adaptation capability of meta-learning, where it first obtains a single global model, and each client achieves a personalized model by fine-tuning the global one with its local data. However, existing meta-learning-based approaches implicitly assume that the data distribution among different clients is similar, which may not be applicable due to the property of data heterogeneity in federated learning. In this work, we propose a Group-based FederatedMeta-Learning framework, called G-FML, which adaptively divides the clients into groups based on the similarity of their data distribution, and the personalized models are obtained with meta-learning within each group. In particular, we develop a simple yet effective grouping mechanism to adaptively partition the clients into multiple groups. Our mechanism ensures that each group is formed by the clients with similar data distribution such that the group-wisemeta-model can achieve "personalization" at large. By doing so, our framework can be generalized to a highly heterogeneous environment. We evaluate the effectiveness of our proposed G-FML framework on three heterogeneous benchmarking datasets. The experimental results show that our framework improves the model accuracy by up to 13.15% relative to the state-of-the-art federated meta-learning.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Data augmentation scheme for federated learning with non-IID data
    Tang L.
    Wang D.
    Liu S.
    Tongxin Xuebao/Journal on Communications, 2023, 44 (01): : 164 - 176
  • [32] A Study of Enhancing Federated Learning on Non-IID Data with Server Learning
    Mai V.S.
    La R.J.
    Zhang T.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (11): : 1 - 15
  • [33] Federated Learning Based on Diffusion Model to Cope with Non-IID Data
    Zhao, Zhuang
    Yang, Feng
    Liang, Guirong
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT IX, 2024, 14433 : 220 - 231
  • [34] Enhanced Federated Learning on Non-iid Data via Local Importance Sampling
    Zhu, Zheqi
    Fan, Pingyi
    Peng, Chenghui
    Letaief, Khaled B.
    2023 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS, 2023, : 104 - 109
  • [35] Federated Learning for Non-IID Data via Unified Feature Learning and Optimization Objective Alignment
    Zhang, Lin
    Luo, Yong
    Bai, Yan
    Du, Bo
    Duan, Ling-Yu
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 4400 - 4408
  • [36] Personalized Federated Graph Learning on Non-IID Electronic Health Records
    Tang, Tao
    Han, Zhuoyang
    Cai, Zhen
    Yu, Shuo
    Zhou, Xiaokang
    Oseni, Taiwo
    Das, Sajal K.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 11843 - 11856
  • [37] Towards Robust Federated Learning via Logits Calibration on Non-IID Data
    Qiao, Yu
    Adhikary, Apurba
    Zhang, Chaoning
    Hong, Choong Seon
    PROCEEDINGS OF 2024 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM, NOMS 2024, 2024,
  • [38] FEDERATED PAC-BAYESIAN LEARNING ON NON-IID DATA
    Zhao, Zihao
    Liu, Yang
    Ding, Wenbo
    Zhang, Xiao-Ping
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 5945 - 5949
  • [39] Accelerating Federated learning on non-IID data against stragglers
    Zhang, Yupeng
    Duan, Lingjie
    Cheung, Ngai-Man
    2022 IEEE INTERNATIONAL CONFERENCE ON SENSING, COMMUNICATION, AND NETWORKING (SECON WORKSHOPS), 2022, : 43 - 48
  • [40] Inverse Distance Aggregation for Federated Learning with Non-IID Data
    Yeganeh, Yousef
    Farshad, Azade
    Navab, Nassir
    Albarqouni, Shadi
    DOMAIN ADAPTATION AND REPRESENTATION TRANSFER, AND DISTRIBUTED AND COLLABORATIVE LEARNING, DART 2020, DCL 2020, 2020, 12444 : 150 - 159