SBML2HYB: a Python']Python interface for SBML compatible hybrid modeling

被引:4
作者
Pinto, Jose [1 ]
Costa, Rafael S. [1 ]
Alexandre, Leonardo [1 ,2 ]
Ramos, Joao [1 ]
Oliveira, Rui [1 ]
机构
[1] Univ NOVA Lisboa, NOVA Sch Sci & Technol, Dept Chem, LAQV REQUIMTE, Lisbon, Portugal
[2] INESC ID, Lisbon, Portugal
关键词
PROTEIN; PATHWAY;
D O I
10.1093/bioinformatics/btad044
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Here, we present sbml2hyb, an easy-to-use standalone Python tool that facilitates the conversion of existing mechanistic models of biological systems in Systems Biology Markup Language (SBML) into hybrid semiparametric models that combine mechanistic functions with machine learning (ML). The so-formed hybrid models can be trained and stored back in databases in SBML format. The tool supports a user-friendly export interface with an internal format validator. Two case studies illustrate the use of the sbml2hyb tool. Additionally, we describe HMOD, a new model format designed to support and facilitate hybrid models building. It aggregates the mechanistic model information with the ML information and follows as close as possible the SBML rules. We expect the sbml2hyb tool and HMOD to greatly facilitate the widespread usage of hybrid modeling techniques for biological systems analysis.
引用
收藏
页数:4
相关论文
共 24 条
[1]   The era of big data: Genome-scale modelling meets machine learning [J].
Antonakoudis, Athanasios ;
Barbosa, Rodrigo ;
Kotidis, Pavlos ;
Kontoravdi, Cleo .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 :3287-3300
[2]   LibSBML: an API library for SBML [J].
Bornstein, Benjamin J. ;
Keating, Sarah M. ;
Jouraku, Akiya ;
Hucka, Michael .
BIOINFORMATICS, 2008, 24 (06) :880-881
[3]   Hybrid metabolic flux analysis: combining stoichiometric and statistical constraints to model the formation of complex recombinant products [J].
Carinhas, Nuno ;
Bernal, Vicente ;
Teixeira, Ana P. ;
Carrondo, Manuel J. T. ;
Alves, Paula M. ;
Oliveira, Rui .
BMC SYSTEMS BIOLOGY, 2011, 5
[4]   Control of the threonine-synthesis pathway in Escherichia coli:: a theoretical and experimental approach [J].
Chassagnole, C ;
Fell, DA ;
Raïs, B ;
Kudla, B ;
Mazat, JP .
BIOCHEMICAL JOURNAL, 2001, 356 :433-444
[5]   Projection to latent pathways (PLP): a constrained projection to latent variables (PLS) method for elementary flux modes discrimination [J].
Ferreira, Ana R. ;
Dias, Joao M. L. ;
Teixeira, Ana P. ;
Carinhas, Nuno ;
Portela, Rui M. C. ;
Isidro, Ines A. ;
von Stosch, Moritz ;
Oliveira, Rui .
BMC SYSTEMS BIOLOGY, 2011, 5
[6]   COPASI- A COmplex PAthway SImulator [J].
Hoops, Stefan ;
Sahle, Sven ;
Gauges, Ralph ;
Lee, Christine ;
Pahle, Juergen ;
Simus, Natalia ;
Singhal, Mudita ;
Xu, Liang ;
Mendes, Pedro ;
Kummer, Ursula .
BIOINFORMATICS, 2006, 22 (24) :3067-3074
[7]   The systems biology markup language (SBML):: a medium for representation and exchange of biochemical network models [J].
Hucka, M ;
Finney, A ;
Sauro, HM ;
Bolouri, H ;
Doyle, JC ;
Kitano, H ;
Arkin, AP ;
Bornstein, BJ ;
Bray, D ;
Cornish-Bowden, A ;
Cuellar, AA ;
Dronov, S ;
Gilles, ED ;
Ginkel, M ;
Gor, V ;
Goryanin, II ;
Hedley, WJ ;
Hodgman, TC ;
Hofmeyr, JH ;
Hunter, PJ ;
Juty, NS ;
Kasberger, JL ;
Kremling, A ;
Kummer, U ;
Le Novère, N ;
Loew, LM ;
Lucio, D ;
Mendes, P ;
Minch, E ;
Mjolsness, ED ;
Nakayama, Y ;
Nelson, MR ;
Nielsen, PF ;
Sakurada, T ;
Schaff, JC ;
Shapiro, BE ;
Shimizu, TS ;
Spence, HD ;
Stelling, J ;
Takahashi, K ;
Tomita, M ;
Wagner, J ;
Wang, J .
BIOINFORMATICS, 2003, 19 (04) :524-531
[8]   Hybrid metabolic flux analysis and recombinant protein prediction in Pichia pastoris X-33 cultures expressing a singlechain antibody fragment [J].
Isidro, Ines A. ;
Portela, Rui M. ;
Clemente, Joao J. ;
Cunha, Antonio E. ;
Oliveira, Rui .
BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2016, 39 (09) :1351-1363
[9]   Machine learning applications in genome-scale metabolic modeling [J].
Kim, Yeji ;
Kim, Gi Bae ;
Lee, Sang Yup .
CURRENT OPINION IN SYSTEMS BIOLOGY, 2021, 25 :42-49
[10]   CySBML: a Cytoscape plugin for SBML [J].
Koenig, Matthias ;
Draeger, Andreas ;
Holzhuetter, Hermann-Georg .
BIOINFORMATICS, 2012, 28 (18) :2402-2403