Illumination estimation for nature preserving low-light image enhancement

被引:25
|
作者
Singh, Kavinder [1 ]
Parihar, Anil Singh [1 ]
机构
[1] Delhi Technol Univ, Dept Comp Sci & Engn, Machine Learning Res Lab, Delhi, India
关键词
Low-light image; Illumination estimation; Retinex; Image enhancement; Guided filtering; CONTRAST ENHANCEMENT; ALGORITHM;
D O I
10.1007/s00371-023-02770-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In retinex model, images are considered as a combination of two components: illumination and reflectance. However, decomposing an image into the illumination and reflectance is an ill-posed problem. This paper presents a new approach to estimate the illumination for low-light image enhancement. This work contains three major tasks: estimation of structure-aware initial illumination, refinement of the estimated illumination, and the final correction of lightness in refined illumination. We have proposed a novel approach for structure-aware initial illumination estimation leveraging a new multi-scale guided filtering approach. The algorithm refines proposed initial estimation by formulating a new multi-objective function for optimization. Further, we proposed a new adaptive illumination adjustment for correction of lightness using the estimated illumination. The qualitative and quantitative analysis on low-light images with varying illumination shows that the proposed algorithm performs image enhancement with color constancy and preserves the natural details. The performance comparison with state-of-the-art algorithms shows the superiority of the proposed algorithm.
引用
收藏
页码:121 / 136
页数:16
相关论文
共 50 条
  • [21] Ghost Imaging in the Dark: A Multi-Illumination Estimation Network for Low-Light Image Enhancement
    Zhu, Zhengjie
    Yang, Xiaogang
    Lu, Ruitao
    Shen, Tong
    Zhang, Tao
    Wang, Siyu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (02) : 1576 - 1590
  • [22] Decoupled Low-Light Image Enhancement
    Hao, Shijie
    Han, Xu
    Guo, Yanrong
    Wang, Meng
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (04)
  • [23] Detachable image decomposition and illumination mapping search for low-light image enhancement
    Jia, Fan
    Mao, Shen
    Huang, Zijian
    Zeng, Tieyong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 436
  • [24] DICNet: achieve low-light image enhancement with image decomposition, illumination enhancement, and color restoration
    Pan, Heng
    Gao, Bingkun
    Wang, Xiufang
    Jiang, Chunlei
    Chen, Peng
    VISUAL COMPUTER, 2024, 40 (10) : 6779 - 6795
  • [25] A Deep Convolutional Neural Network-based Low-light Image Enhancement Using Illumination Map
    Wang, Liqian
    Shao, Wenze
    Ge, Qi
    ELEVENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2019), 2020, 11373
  • [26] Exploiting Illumination Knowledge in the Real World for Low-Light Image Enhancement
    Guo, Lanqing
    Lin, Yuxin
    Li, Jian
    Wen, Bihan
    IEEE MULTIMEDIA, 2024, 31 (01) : 33 - 41
  • [27] Deep Multi-Illumination Fusion for Low-Light Image Enhancement
    Zhong, Wei
    Lin, Jie
    Ma, Long
    Liu, Risheng
    Fan, Xin
    PATTERN RECOGNITION AND COMPUTER VISION,, PT III, 2021, 13021 : 140 - 150
  • [28] Low-Light Image Enhancement: A Comparative Review and Prospects
    Kim, Wonjun
    IEEE ACCESS, 2022, 10 (84535-84557): : 84535 - 84557
  • [29] Low-light image enhancement via illumination optimization and color correction
    Zhang, Wenbo
    Xu, Liang
    Wu, Jianjun
    Huang, Wei
    Shi, Xiaofan
    Li, Yanli
    COMPUTERS & GRAPHICS-UK, 2025, 126
  • [30] Fractal pyramid low-light image enhancement network with illumination information
    Sun, Ting
    Fan, Guodong
    Gan, Min
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (04)