UV-activated efficient formaldehyde gas sensor based on cauliflower-like graphene-modified In-doped ZnO at room temperature

被引:18
|
作者
Yang, Youzhi [1 ]
Li, Shuang [1 ]
Liu, Di [1 ]
Guo, Siyuan [1 ]
Liang, Zhijun [1 ]
Ba, Kaikai [1 ]
Lin, Yanhong [1 ]
Xie, Tengfeng [1 ]
机构
[1] Jilin Univ, Coll Chem, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
ZnO; Formaldehyde sensors; Ppb-detection; UV light; Room temperature; OXIDE; SEMICONDUCTOR;
D O I
10.1016/j.jallcom.2022.168104
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
So far, for photoelectric metal oxide semiconductor gas sensors, it is a huge bottleneck to achieve high response performance and low detection limit of formaldehyde at room temperature. This work introduced the synthesis of cauliflower-like graphene-modified In-doped ZnO (GR/In-ZnO) composites via a facile one -pot method with a large comparative surface area for low-concentration formaldehyde sensing at room temperature. GR/In-ZnO-30 0 showed the highest response to 10 ppm formaldehyde, up to 1891%, which was 12 times that of In-ZnO-30 0. In addition, the theoretical detection limit of GR/In-ZnO-30 0 was as low as 13 ppb, and the response at this concentration was 137%. Through the characterization of Surface Photovoltage (SPV), Transient Photovoltage (TPV), Surface Photocurrent (SPC), X-ray Photoelectron Spectroscopy (XPS), and nitrogen gas adsorption isotherms, good formaldehyde sensing performance of GR/ In-ZnO-30 0 was attributed to the excellent separation and transmission capacity of photogenerated car-riers, the high specific surface area (109.2 m(2)/g), and abundant oxygen defects on the surface. This work provides a feasible strategy for the design of low-concentration formaldehyde sensing materials with a rapid response at room temperature.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 35 条
  • [31] Highly selective room-temperature formaldehyde gas sensor based on SnO2 nanoparticle-modified In2O3 microspheres
    Liu, Miaomiao
    Sun, Qihua
    Zhu, Yuqing
    Hu, Ping
    Wu, Zhaofeng
    APPLIED SURFACE SCIENCE, 2025, 695
  • [32] Porous In2O3-ZnO nanofiber-based sensor for ultrasensitive room-temperature detection of toluene gas under UV illumination
    Cai, Zhicheng
    Park, Jiho
    Park, Sunghoon
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 24 : 2482 - 2499
  • [33] Highly Efficient Room-Temperature Gas Sensor Based on TiO2 Nanotube-Reduced Graphene-Oxide Hybrid Device
    Acharyya, Debanjan
    Bhattacharyya, Partha
    IEEE ELECTRON DEVICE LETTERS, 2016, 37 (05) : 656 - 659
  • [35] Humidity activated ultra-selective room temperature gas sensor based on W doped MoS2/RGO composites for trace level ammonia detection
    Sibi, S. P. Linto
    Rajkumar, M.
    Manoharan, Mathankumar
    Mobika, J.
    Priya, V. Nithya
    Kumar, R. T. Rajendra
    ANALYTICA CHIMICA ACTA, 2024, 1287