Quantitative CT analysis of lung parenchyma to improve malignancy risk estimation in incidental pulmonary nodules

被引:6
作者
Peters, Alan A. [1 ,2 ,3 ,4 ]
Weinheimer, Oliver [1 ,2 ]
von Stackelberg, Oyunbileg [1 ,2 ]
Kroschke, Jonas [1 ,2 ,5 ]
Piskorski, Lars [1 ,2 ]
Debic, Manuel [1 ,2 ]
Schlamp, Kai [1 ,3 ]
Welzel, Linn [1 ,2 ]
Pohl, Moritz [6 ]
Christe, Andreas [4 ]
Ebner, Lukas [4 ]
Kauczor, Hans-Ulrich [1 ,2 ,3 ]
Heussel, Claus Peter [1 ,2 ,3 ]
Wielpuetz, Mark O. [1 ,2 ,3 ]
机构
[1] Heidelberg Univ Hosp, Diagnost & Intervent Radiol, Neuenheimer Feld 420, D-69120 Heidelberg, Germany
[2] Gemu Ctr Lung Res DZL, Translat Lung Res Ctr Heidelberg TLRC, Neuenheimer Feld 156, D-69120 Heidelberg, Germany
[3] Heidelberg Univ, Dept Diagnost & Intervent Radiol Nucl Med, Thoraxklin, Rontgenstr 1, D-69126 Heidelberg, Germany
[4] Univ Bern, Bern Univ Hosp, Dept Diagnost Intervent & Pediat Radiol, Inselspital, Freiburgstr, CH-3010 Bern, Switzerland
[5] Kantonsspital Thurgau, Inst Radiol, Spitalcampus 1, CH-8596 Munsterlingen, Switzerland
[6] Heidelberg Univ, Inst Med Biometry, Neuenheimer Feld 130-3, D-69120 Heidelberg, Germany
关键词
Lung neoplasms; Risk assessment; Decision support; Emphysema; Fibrosis; COMPUTED-TOMOGRAPHY; SEVERE EMPHYSEMA; CANCER; PROBABILITY; VALIDATION; COPD; OBSTRUCTION; MODEL; LINKS;
D O I
10.1007/s00330-022-09334-w
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectivesTo assess the value of quantitative computed tomography (QCT) of the whole lung and nodule-bearing lobe regarding pulmonary nodule malignancy risk estimation. MethodsA total of 251 subjects (median [IQR] age, 65 (57-73) years; 37% females) with pulmonary nodules on non-enhanced thin-section CT were retrospectively included. Twenty percent of the nodules were malignant, the remainder benign either histologically or at least 1-year follow-up. CT scans were subjected to in-house software, computing parameters such as mean lung density (MLD) or peripheral emphysema index (pEI). QCT variable selection was performed using logistic regression; selected variables were integrated into the Mayo Clinic and the parsimonious Brock Model. ResultsWhole-lung analysis revealed differences between benign vs. malignant nodule groups in several parameters, e.g. the MLD (-766 vs. -790 HU) or the pEI (40.1 vs. 44.7 %). The proposed QCT model had an area-under-the-curve (AUC) of 0.69 (95%-CI, 0.62-0.76) based on all available data. After integrating MLD and pEI into the Mayo Clinic and Brock Model, the AUC of both clinical models improved (AUC, 0.91 to 0.93 and 0.88 to 0.91, respectively). The lobe-specific analysis revealed that the nodule-bearing lobes had less emphysema than the rest of the lung regarding benign (EI, 0.5 vs. 0.7 %; p < 0.001) and malignant nodules (EI, 1.2 vs. 1.7 %; p = 0.001). ConclusionsNodules in subjects with higher whole-lung metrics of emphysema and less fibrosis are more likely to be malignant; hereby the nodule-bearing lobes have less emphysema. QCT variables could improve the risk assessment of incidental pulmonary nodules.
引用
收藏
页码:3908 / 3917
页数:10
相关论文
共 34 条
[1]   Risk of malignancy in pulmonary nodules: A validation study of four prediction models [J].
Al-Ameri, Ali ;
Malhotra, Puneet ;
Thygesen, Helene ;
Plant, Paul K. ;
Vaidyanathan, Sri ;
Karthik, Shishir ;
Scarsbrook, Andrew ;
Callister, Matthew E. J. .
LUNG CANCER, 2015, 89 (01) :27-30
[2]   Quantitative CT Analysis of Diffuse Lung Disease [J].
Chen, Alicia ;
Karwoski, Ronald A. ;
Gierada, David S. ;
Bartholmai, Brian J. ;
Koo, Chi Wan .
RADIOGRAPHICS, 2020, 40 (01) :28-43
[3]   Predicting Lung Cancer Prior to Surgical Resection in Patients with Lung Nodules [J].
Deppen, Stephen A. ;
Blume, Jeffrey D. ;
Aldrich, Melinda C. ;
Fletcher, Sarah A. ;
Massion, Pierre P. ;
Walker, Ronald C. ;
Chen, Heidi C. ;
Speroff, Theodore ;
Degesys, Catherine A. ;
Pinkerman, Rhonda ;
Lambright, Eric S. ;
Nesbitt, Jonathan C. ;
Putnam, Joe B., Jr. ;
Grogan, Eric L. .
JOURNAL OF THORACIC ONCOLOGY, 2014, 9 (10) :1477-1484
[4]   Quantitative CT of the lung [J].
Goldin, JG .
RADIOLOGIC CLINICS OF NORTH AMERICA, 2002, 40 (01) :145-+
[5]   Recent Trends in the Identification of Incidental Pulmonary Nodules [J].
Gould, Michael K. ;
Tang, Tania ;
Liu, In-Lu Amy ;
Lee, Janet ;
Zheng, Chengyi ;
Danforth, Kim N. ;
Kosco, Anne E. ;
Di Fiore, Jamie L. ;
Suh, David E. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2015, 192 (10) :1208-1214
[6]   Evaluation of Individuals With Pulmonary Nodules: When Is It Lung Cancer? Diagnosis and Management of Lung Cancer, 3rd ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines [J].
Gould, Michael K. ;
Donington, Jessica ;
Lynch, William R. ;
Mazzone, Peter J. ;
Midthun, David E. ;
Naidich, David P. ;
Wiener, Renda Soylemez .
CHEST, 2013, 143 (05) :E93-E120
[7]   Quantitative computed tomography: emphysema and airway wall thickness by sex, age and smoking [J].
Grydeland, T. B. ;
Dirksen, A. ;
Coxson, H. O. ;
Pillai, S. G. ;
Sharma, S. ;
Eide, G. E. ;
Gulsvik, A. ;
Bakke, P. S. .
EUROPEAN RESPIRATORY JOURNAL, 2009, 34 (04) :858-865
[8]   Fully automatic quantitative assessment of emphysema in computed tomography: comparison with pulmonary function testing and normal values [J].
Heussel, C. P. ;
Herth, F. J. F. ;
Kappes, J. ;
Hantusch, R. ;
Hartlieb, S. ;
Weinheimer, O. ;
Kauczor, H. U. ;
Eberhardt, R. .
EUROPEAN RADIOLOGY, 2009, 19 (10) :2391-2402
[9]   Correlation of Regional Emphysema and Lung Cancer A Lung Tissue Research Consortium-Based Study [J].
Hohberger, Laurie A. ;
Schroeder, Darrell R. ;
Bartholmai, Brian J. ;
Yang, Ping ;
Wendt, Christine H. ;
Bitterman, Peter B. ;
Larsson, Ola ;
Limper, Andrew H. .
JOURNAL OF THORACIC ONCOLOGY, 2014, 9 (05) :639-645
[10]   Quantitative classification based on CT histogram analysis of non-small cell lung cancer: Correlation with histopathological characteristics and recurrence-free survival [J].
Kawata, Yoshiki ;
Niki, Noboru ;
Ohmatsu, Hironobu ;
Kusumoto, Masahiko ;
Tsuchida, Takaaki ;
Eguchi, Kenji ;
Kaneko, Masahiro ;
Moriyama, Noriyuki .
MEDICAL PHYSICS, 2012, 39 (02) :988-1000