DECANet: Image Semantic Segmentation Method Based on Improved DeepLabv3+

被引:3
作者
Tang Lu [1 ,2 ]
Wan Liang [1 ,2 ]
Wang Tingting [1 ,2 ]
Li Shusheng [1 ,2 ]
机构
[1] Guizhou Univ, Coll Comp Sci & Technol, Guiyang 550025, Guizhou, Peoples R China
[2] Guizhou Univ, Inst Comp Software & Theory, Guiyang 550025, Guizhou, Peoples R China
关键词
image semantic segmentation; attention mechanism; atrous space pyramidal pooling (ASPP); multi-scale fusion;
D O I
10.3788/LOP212704
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The variation in pixel values between different objects during semantic segmentation of images leads to the loss of local image details in existing network models. An image semantic segmentation method (DECANet) is proposed to solve this problem. First, a channel attention network module is introduced to improve network clarity by modeling the dependencies of all channels, selectively learning and reinforcing channel features, and extracting useful information to suppress useless data. Second, using an improved atrous space pyramidal pooling (ASPP) structure, the extracted image convolutional features are multiscale fused to reduce the loss of image detail information, and the semantic pixel location information is extracted without increasing the weight parameters to speed up the model's convergence. Finally, the mean intersection over union of the proposed method reaches 81. 08% and 76% on PASCAL VOC2012 and Cityscapes datasets, respectively. The detection performance of the DECANet is superior to the existing state-of-the-art network models, which can effectively capture local detail information and reduce image semantic pixel classification errors.
引用
收藏
页数:9
相关论文
共 33 条
[1]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[2]   Real-Time Semantic Segmentation Algorithm Based on Feature Fusion Technology [J].
Cai Yu ;
Huang Xuegong ;
Zhian, Zhang ;
Zhu Xinnian ;
Ma Xiang .
LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (02)
[3]  
Chen LC, 2016, Arxiv, DOI arXiv:1412.7062
[4]  
Chen LC, 2017, Arxiv, DOI arXiv:1706.05587
[5]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[6]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[7]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[8]   The Pascal Visual Object Classes (VOC) Challenge [J].
Everingham, Mark ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) :303-338
[9]   Scene Segmentation With Dual Relation-Aware Attention Network [J].
Fu, Jun ;
Liu, Jing ;
Jiang, Jie ;
Li, Yong ;
Bao, Yongjun ;
Lu, Hanqing .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (06) :2547-2560
[10]   Dual Attention Network for Scene Segmentation [J].
Fu, Jun ;
Liu, Jing ;
Tian, Haijie ;
Li, Yong ;
Bao, Yongjun ;
Fang, Zhiwei ;
Lu, Hanqing .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3141-3149