Experimental and theoretical study of the microstructure evolution and thermal-physical properties of hypereutectic Al-Fe alloys

被引:2
作者
Mo, Liling [1 ]
Lin, Mingxian [1 ]
Zhan, Meiyan [1 ]
Zhao, Yu-Jun [2 ]
Du, Jun [1 ,3 ]
机构
[1] South China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510640, Peoples R China
[2] South China Univ Technol, Dept Phys, 381 Wushan Rd, Guangzhou 510640, Guangdong, Peoples R China
[3] South China Univ Technol, Sch Mat Sci & Engn, Dept Met Mat, 381 Wushan Rd, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Hypereutectic; Al-Fe alloy; First-principles calculation; Thermal-physical property; ELECTRICAL-CONDUCTIVITY; EXPANSION BEHAVIOR; BINARY; COMPOSITES; PHONON; MODEL;
D O I
10.1557/s43578-024-01293-w
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A systematic investigation was undertaken to analyze the microstructure and thermal-physical properties of hypereutectic Al-xFe alloys. With increasing Fe content, the Al13Fe4 phase undergoes a morphological shift from needle-like to lamellar-like. The coarse Al13Fe4 negatively affects the thermal conductivity (TC), resulting in a decrease from 200.1 to 84.5 W/(m/K) of TC as the Fe content rises from 2 to 12 wt%. Simultaneously, the thermal expansion coefficient (CTE) decreases. At 100 degrees C, Al-12Fe has a CTE of 17.6 x 10-6/K. Additionally, first-principles calculations were used to understand the intrinsic properties of the Al13Fe4. Using the quasi-harmonic approximation (QHA), the linear CTE of Al13Fe4 at 100 degrees C was calculated to be 9.88 x 10-6/K. By integrating experiments and theoretical calculations, the generalized effective medium theory (GEMT) and a modified Turner model were employed to quantitatively describe the correlation between the microstructural evolution of Al-xFe alloys and their TC/CTE.
引用
收藏
页码:1084 / 1095
页数:12
相关论文
共 54 条
[1]   Dependency of the thermal and electrical conductivity on the temperature and composition of Cu in the Al based Al-Cu alloys [J].
Aksoz, S. ;
Ocak, Y. ;
Marasli, N. ;
Cadirli, E. ;
Kaya, H. ;
Boyuk, U. .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2010, 34 (08) :1507-1516
[2]  
Bao H., 2018, ES ENERGY ENVIRON, V1, P16, DOI DOI 10.30919/ESEE8C149
[3]   Effects of thermomechanical treatment on the microstructure, precipitation strengthening, internal friction, and thermal stability of Al-Er-Yb-Sc alloys with good electrical conductivity [J].
Barkov, R. Yu ;
Mikhaylovskaya, A., V ;
Yakovtseva, O. A. ;
Loginova, I. S. ;
Prosviryakov, A. S. ;
Pozdniakov, A., V .
JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 855
[4]   FINITE ELASTIC STRAIN OF CUBIC CRYSTALS [J].
BIRCH, F .
PHYSICAL REVIEW, 1947, 71 (11) :809-824
[5]   GIBBS:: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model [J].
Blanco, MA ;
Francisco, E ;
Luaña, V .
COMPUTER PHYSICS COMMUNICATIONS, 2004, 158 (01) :57-72
[6]  
Born M., 1954, DYNAMICAL THEORY CRY
[7]   The effective thermal conductivity of packed beds of spheres for a finite contact area [J].
Buonanno, G ;
Carotenuto, A .
NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2000, 37 (04) :343-357
[8]   Thermal and electrical conductivity in Al-Si/Cu/Fe/Mg binary and ternary Al alloys [J].
Chen, J. K. ;
Hung, H. Y. ;
Wang, C. F. ;
Tang, N. K. .
JOURNAL OF MATERIALS SCIENCE, 2015, 50 (16) :5630-5639
[9]   First-principles study of the structural, electronic, vibrational, and elastic properties of orthorhombic NiSi [J].
Connetable, D. ;
Thomas, O. .
PHYSICAL REVIEW B, 2009, 79 (09)
[10]   AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations [J].
Curtarolo, Stefano ;
Setyawan, Wahyu ;
Wang, Shidong ;
Xue, Junkai ;
Yang, Kesong ;
Taylor, Richard H. ;
Nelson, Lance J. ;
Hart, Gus L. W. ;
Sanvito, Stefano ;
Buongiorno-Nardelli, Marco ;
Mingo, Natalio ;
Levy, Ohad .
COMPUTATIONAL MATERIALS SCIENCE, 2012, 58 :227-235