Machine Learning Predicts 30-Day Outcome among Acute Myeloid Leukemia Patients: A Single-Center, Retrospective, Cohort Study

被引:0
作者
Lee, Howon [1 ]
Han, Jay Ho [2 ]
Kim, Jae Kwon [2 ]
Yoo, Jaeeun [3 ]
Yoon, Jae-Ho [4 ]
Cho, Byung Sik [4 ]
Kim, Hee-Je [4 ]
Lim, Jihyang [5 ]
Jekarl, Dong Wook [2 ,6 ]
Kim, Yonggoo [2 ]
Finelli, Carlo
机构
[1] Catholic Univ Korea, Yeouido St Marys Hosp, Coll Med, Dept Lab Med, Seoul 07345, South Korea
[2] Catholic Univ Korea, Seoul St Marys Hosp, Coll Med, Dept Lab Med, Seoul 06591, South Korea
[3] Catholic Univ Korea, Dept Lab Med, Incheon St Marys Hosp, Coll Med, Incheon 21431, South Korea
[4] Catholic Univ Korea, Seoul St Marys Hosp, Coll Med, Div Hematol,Dept Internal Med, Seoul 06591, South Korea
[5] Catholic Univ Korea, Eunpyeong St Marys Hosp, Coll Med, Dept Lab Med, Eunpyeong St, Seoul 03312, South Korea
[6] Catholic Univ Korea, Res & Dev Inst Vitro Diagnost Med Devices, Coll Med, Seoul 06591, South Korea
关键词
acute myeloid leukemia; early death; machine learning; decision tree; classification; hemorrhage; fibrinogen; infection; CLASSIFICATION; MANAGEMENT; SELECTION; TUMORS;
D O I
10.3390/jcm12185940
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Acute myeloid leukemia (AML) is a clinical emergency requiring treatment and results in high 30-day (D30) mortality. In this study, the prediction of D30 survival was studied using a machine learning (ML) method. The total cohort consisted of 1700 survivors and 130 non-survivors at D30. Eight clinical and 42 laboratory variables were collected at the time of diagnosis by pathology. Among them, six variables were selected by a feature selection method: induction chemotherapy (CTx), hemorrhage, infection, C-reactive protein, blood urea nitrogen, and lactate dehydrogenase. Clinical and laboratory data were entered into the training model for D30 survival prediction, followed by testing. Among the tested ML algorithms, the decision tree (DT) algorithm showed higher accuracy, the highest sensitivity, and specificity values (95% CI) of 90.6% (0.918-0.951), 70.4% (0.885-0.924), and 92.1% (0.885-0.924), respectively. DT classified patients into eight specific groups with distinct features. Group 1 with CTx showed a favorable outcome with a survival rate of 97.8% (1469/1502). Group 6, with hemorrhage and the lowest fibrinogen level at diagnosis, showed the worst survival rate of 45.5% (25/55) and 20.5 days. Prediction of D30 survival among AML patients by classification of patients with DT showed distinct features that might support clinical decision-making.
引用
收藏
页数:15
相关论文
共 42 条
  • [1] International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data
    Arber, Daniel A.
    Orazi, Attilio
    Hasserjian, Robert P.
    Borowitz, Michael J.
    Calvo, Katherine R.
    Kvasnicka, Hans-Michael
    Wang, Sa A.
    Bagg, Adam
    Barbui, Tiziano
    Branford, Susan
    Bueso-Ramos, Carlos E.
    Cortes, Jorge E.
    Dal Cin, Paola
    DiNardo, Courtney D.
    Dombret, Herve
    Duncavage, Eric J.
    Ebert, Benjamin L.
    Estey, Elihu H.
    Facchetti, Fabio
    Foucar, Kathryn
    Gangat, Naseema
    Gianelli, Umberto
    Godley, Lucy A.
    Gokbuget, Nicola
    Gotlib, Jason
    Hellstrom-Lindberg, Eva
    Hobbs, Gabriela S.
    Hoffman, Ronald
    Jabbour, Elias J.
    Kiladjian, Jean-Jacques
    Larson, Richard A.
    Le Beau, Michelle M.
    Loh, Mignon L. -C.
    Lowenberg, Bob
    Macintyre, Elizabeth
    Malcovati, Luca
    Mullighan, Charles G.
    Niemeyer, Charlotte
    Odenike, Olatoyosi M.
    Ogawa, Seishi
    Orfao, Alberto
    Papaemmanuil, Elli
    Passamonti, Francesco
    Porkka, Kimmo
    Pui, Ching-Hon
    Radich, Jerald P.
    Reiter, Andreas
    Rozman, Maria
    Rudelius, Martina
    Savona, Michael R.
    [J]. BLOOD, 2022, 140 (11) : 1200 - 1228
  • [2] Awada H, 2021, BLOOD, V138, P1885, DOI 10.1182/blood.2020010603
  • [3] Recent advances in targeted therapies in acute myeloid leukemia
    Bhansali, Rahul S. S.
    Pratz, Keith W. W.
    Lai, Catherine
    [J]. JOURNAL OF HEMATOLOGY & ONCOLOGY, 2023, 16 (01)
  • [4] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [5] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [7] Predicting Mortality Using Machine Learning Algorithms in Patients Who Require Renal Replacement Therapy in the Critical Care Unit
    Chang, Hsin-Hsiung
    Chiang, Jung-Hsien
    Wang, Chi-Shiang
    Chiu, Ping-Fang
    Abdel-Kader, Khaled
    Chen, Huiwen
    Siew, Edward D.
    Yabes, Jonathan
    Murugan, Raghavan
    Clermont, Gilles
    Palevsky, Paul M.
    Jhamb, Manisha
    [J]. JOURNAL OF CLINICAL MEDICINE, 2022, 11 (18)
  • [8] Chen TQ, 2016, Arxiv, DOI [arXiv:1603.02754, DOI 10.48550/ARXIV.1603.02754, 10.48550/arXiv.1603.02754]
  • [9] Acute myeloid leukaemia
    Dinardo, Courtney D.
    Erba, Harry P.
    Freeman, Sylvie D.
    Wei, Andrew H.
    [J]. LANCET, 2023, 401 (10393) : 2073 - 2086
  • [10] Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel
    Doehner, Hartmut
    Estey, Elihu
    Grimwade, David
    Amadori, Sergio
    Appelbaum, Frederick R.
    Buechner, Thomas
    Dombret, Herve
    Ebert, Benjamin L.
    Fenaux, Pierre
    Larson, Richard A.
    Levine, Ross L.
    Lo-Coco, Francesco
    Naoe, Tomoki
    Niederwieser, Dietger
    Ossenkoppele, Gert J.
    Sanz, Miguel
    Sierra, Jorge
    Tallman, Martin S.
    Tien, Hwei-Fang
    Wei, Andrew H.
    Lowenberg, Bob
    Bloomfield, Clara D.
    [J]. BLOOD, 2017, 129 (04) : 424 - 447