Color-scalable flow cytometry with Raman tags

被引:15
作者
Nishiyama, Ryo [1 ]
Hiramatsu, Kotaro [1 ,2 ,3 ]
Kawamura, Shintaro [4 ,5 ]
Dodo, Kosuke [4 ,5 ]
Furuyaa, Kei [1 ]
de Pablo, Julia Gala [1 ]
Takizawa, Shigekazu [1 ]
Min, Wei [6 ]
Sodeoka, Mikiko [4 ,5 ]
Goda, Keisuke [1 ,7 ,8 ]
机构
[1] Univ Tokyo, Dept Chem, Tokyo 1130033, Japan
[2] Univ Tokyo, Res Ctr Spectrochem, Tokyo 1130033, Japan
[3] Japan Sci & Technol Agcy, PRESTO, Saitama 3320012, Japan
[4] RIKEN Cluster Pioneering Res, Synthet Organ Chem Lab, Saitama 3510198, Japan
[5] RIKEN Ctr Sustainable Resource Sci, Saitama 3510198, Japan
[6] Columbia Univ, Dept Chem, New York, NY 10027 USA
[7] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[8] Wuhan Univ, Inst Technol Sci, Wuhan 430072, Peoples R China
来源
PNAS NEXUS | 2023年 / 2卷 / 02期
关键词
flow cytometry; Raman spectroscopy; Raman tag; Raman probe; endocytosis;
D O I
10.1093/pnasnexus/pgad001
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Flow cytometry is an indispensable tool in biology and medicine for counting and analyzing cells in large heterogeneous populations. It identifiesmultiple characteristics of every single cell, typically via fluorescent probes that specifically bind to targetmolecules on the cell surface or within the cell. However, flow cytometry has a critical limitation: the color barrier. The number of chemical traits that can be simultaneously resolved is typically limited to several due to the spectral overlap between fluorescence signals from different fluorescent probes. Here, we present color-scalable flow cytometry based on coherent Raman flow cytometry with Raman tags to break the color barrier. This is made possible by combining a broadband Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) flow cytometer, resonance-enhanced cyanine-based Raman tags, and Raman-active dots (Rdots). Specifically, we synthesized 20 cyanine-based Raman tags whose Raman spectra are linearly independent in the fingerprint region (400 to 1,600 cm(-1)). For highly sensitive detection, we produced Rdots composed of 12 different Raman tags in polymer nanoparticles whose detection limit was as low as 12 nM for a short FT-CARS signal integration time of 420 mu s. We performed multiplex flow cytometry of MCF-7 breast cancer cells stained by 12 different Rdots with a high classification accuracy of 98%. Moreover, we demonstrated a large-scale time-course analysis of endocytosis via the multiplex Raman flow cytometer. Our method can theoretically achieve flow cytometry of live cells with >140 colors based on a single excitation laser and a single detector without increasing instrument size, cost, or complexity.
引用
收藏
页数:8
相关论文
共 32 条
[1]   Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum [J].
Bendall, Sean C. ;
Simonds, Erin F. ;
Qiu, Peng ;
Amir, El-ad D. ;
Krutzik, Peter O. ;
Finck, Rachel ;
Bruggner, Robert V. ;
Melamed, Rachel ;
Trejo, Angelica ;
Ornatsky, Olga I. ;
Balderas, Robert S. ;
Plevritis, Sylvia K. ;
Sachs, Karen ;
Pe'er, Dana ;
Tanner, Scott D. ;
Nolan, Garry P. .
SCIENCE, 2011, 332 (6030) :687-696
[2]  
Brown M, 2000, CLIN CHEM, V46, P1221
[3]   Development, application and computational analysis of high-dimensional fluorescent antibody panels for single-cell flow cytometry [J].
Brummelman, Jolanda ;
Haftmann, Claudia ;
Nunez, Nicolas Gonzalo ;
Alvisi, Giorgia ;
Mazza, Emilia M. C. ;
Becher, Burkhard ;
Lugli, Enrico .
NATURE PROTOCOLS, 2019, 14 (07) :1946-1969
[4]   Multiplexed live-cell profiling with Raman probes [J].
Chen, Chen ;
Zhao, Zhilun ;
Qian, Naixin ;
Wei, Shixuan ;
Hu, Fanghao ;
Min, Wei .
NATURE COMMUNICATIONS, 2021, 12 (01)
[5]   Ultrabright Fluorescent Organic Nanoparticles Based on Small-Molecule Ionic Isolation Lattices** [J].
Chen, Junsheng ;
Fateminia, S. M. Ali ;
Kacenauskaite, Laura ;
Baerentsen, Nicolai ;
Gronfeldt Stenspil, Stine ;
Bredehoeft, Jona ;
Martinez, Karen L. ;
Flood, Amar H. ;
Laursen, Bo W. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (17) :9450-9458
[6]   Guidelines for the use of flow cytometry and cell sorting in immunological studies [J].
Cossarizza, Andrea ;
Chang, Hyun-Dong ;
Radbruch, Andreas ;
Akdis, Mubeccel ;
Andrae, Immanuel ;
Annunziato, Francesco ;
Bacher, Petra ;
Barnaba, Vincenzo ;
Battistini, Luca ;
Bauer, Wolfgang M. ;
Baumgart, Sabine ;
Becher, Burkhard ;
Beisker, Wolfgang ;
Berek, Claudia ;
Blanco, Alfonso ;
Borsellino, Giovanna ;
Boulais, Philip E. ;
Brinkman, Ryan R. ;
Buescher, Martin ;
Busch, Dirk H. ;
Bushnell, Timothy P. ;
Cao, Xuetao ;
Cavani, Andrea ;
Chattopadhyay, Pratip K. ;
Cheng, Qingyu ;
Chow, Sue ;
Clerici, Mario ;
Cooke, Anne ;
Cosma, Antonio ;
Cosmi, Lorenzo ;
Cumano, Ana ;
Dang, Van Duc ;
Davies, Derek ;
De Biasi, Sara ;
Del Zotto, Genny ;
Della Bella, Silvia ;
Dellabona, Paolo ;
Deniz, Gunnur ;
Dessing, Mark ;
Diefenbach, Andreas ;
Di Santo, James ;
Dieli, Francesco ;
Dolf, Andreas ;
Donnenberg, Vera S. ;
Doerner, Thomas ;
Ehrhardt, Gotz R. A. ;
Endl, Elmar ;
Engel, Pablo ;
Engelhardt, Britta ;
Esser, Charlotte .
EUROPEAN JOURNAL OF IMMUNOLOGY, 2017, 47 (10) :1584-1797
[7]   Interferometric Fourier transform coherent anti-Stokes Raman scattering [J].
Cui, Meng ;
Joffre, Manuel ;
Skodack, Joshua ;
Ogilvie, Jennifer P. .
OPTICS EXPRESS, 2006, 14 (18) :8448-8458
[8]  
Dean KM, 2014, NAT CHEM BIOL, V10, P512, DOI [10.1038/nchembio.1556, 10.1038/NCHEMBIO.1556]
[9]   Synthesis of deuterated γ-linolenic acid and application for biological studies: metabolic tuning and Raman imaging [J].
Dodo, Kosuke ;
Sato, Ayato ;
Tamura, Yuki ;
Egoshi, Syusuke ;
Fujiwara, Koichi ;
Oonuma, Kana ;
Nakao, Shuhei ;
Terayama, Naoki ;
Sodeoka, Mikiko .
CHEMICAL COMMUNICATIONS, 2021, 57 (17) :2180-2183
[10]   Deuteration of terminal alkynes realizes simultaneous live cell Raman imaging of similar alkyne-tagged biomolecules [J].
Egoshi, Syusuke ;
Dodo, Kosuke ;
Ohgane, Kenji ;
Sodeoka, Mikiko .
ORGANIC & BIOMOLECULAR CHEMISTRY, 2021, 19 (38) :8232-8236