Solution of fractional Sawada-Kotera-Ito equation using Caputo and Atangana-Baleanu derivatives

被引:13
|
作者
Khirsariya, Sagar R. [1 ]
Rao, Snehal B. [2 ]
机构
[1] Marwadi Univ, Dept Math, Rajkot, Gujarat, India
[2] Maharaja Sayajirao Univ Baroda, Fac Technol & Engn, Dept Appl Math, Vadodara, Gujarat, India
关键词
Adomian decomposition method; Atangana-Baleanu fractional derivative; Caputo fractional derivative; fractional partial differential equation; fractional-order Sawada-Kotera-Ito equation; Shehu transform; DECOMPOSITION METHOD; DIFFERENTIAL-EQUATIONS; MODEL; SIMULATIONS; EXISTENCE; SYSTEM;
D O I
10.1002/mma.9438
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present work, the fractional-order Sawada-Kotera-Ito problem is solved by considering nonlocal Caputo and nonsingular Atangana-Baleanu (ABC) derivatives. The methodology used is an application of the Shehu transform and the Adomian decomposition method. The obtained solution is more accurate when using the ABC type derivative as compared to the Caputo sense, when using the proposed ADShTM method (Adomian decomposition Shehu transform method). The results so obtained by the ADShTM using Caputo and ABC operators are compared, establishing the superiority of the proposed method. The numerical results demonstrate that the application of the ABC derivative is not only relatively more effective and reliable but also straightforward to achieve high precision solution.
引用
收藏
页码:16072 / 16091
页数:20
相关论文
共 50 条
  • [31] Controllability analysis for impulsive integro-differential equation via Atangana-Baleanu fractional derivative
    Kaliraj, Kalimuthu
    Thilakraj, Elumalai
    Ravichandran, Chokkalingam
    Sooppy Nisar, Kottakkaran
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021,
  • [32] Effective methods for numerical analysis of the simplest chaotic circuit model with Atangana-Baleanu Caputo fractional derivative
    Alzahrani, Abdulrahman B. M.
    Saadeh, Rania
    Abdoon, Mohamed A.
    Elbadri, Mohamed
    Berir, Mohammed
    Qazza, Ahmad
    JOURNAL OF ENGINEERING MATHEMATICS, 2024, 144 (01)
  • [33] Numerical analysis of multi-dimensional time-fractional diffusion problems under the Atangana-Baleanu Caputo derivative
    Nadeem, Muhammad
    He, Ji-Huan
    Sedighi, Hamid. M.
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (05) : 8190 - 8207
  • [34] MHD FLOW OF FRACTIONAL NEWTONIAN FLUID EMBEDDED IN A POROUS MEDIUM VIA ATANGANA-BALEANU FRACTIONAL DERIVATIVES
    Abro, Kashif Ali
    Khan, Ilyas
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (03): : 377 - 387
  • [35] Fractional-order modelling and analysis of diabetes mellitus: Utilizing the Atangana-Baleanu Caputo (ABC) operator
    Yadav, Pooja
    Jahan, Shah
    Shah, Kamal
    Peter, Olumuyiwa James
    Abdeljawad, Thabet
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 81 : 200 - 209
  • [36] Comparing the Caputo, Caputo-Fabrizio and Atangana-Baleanu derivative with fractional order: Fractional cubic isothermal auto-catalytic chemical system
    Saad, K. M.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (03):
  • [37] Fuzzy fractional estimates of Swift-Hohenberg model obtained using the Atangana-Baleanu fractional derivative operator
    Rashid, Saima
    Sultana, Sobia
    Kanwal, Bushra
    Jarad, Fahd
    Khalid, Aasma
    AIMS MATHEMATICS, 2022, 7 (09): : 16067 - 16101
  • [38] Analysis of nonlinear Burgers equation with time fractional Atangana-Baleanu-Caputo derivative
    Ghafoor, Abdul
    Fiaz, Muhammad
    Shah, Kamal
    Abdeljawad, Thabet
    HELIYON, 2024, 10 (13)
  • [39] Fractional residual series for conformable time-fractional Sawada-Kotera-Ito, Lax, and Kaup-Kupershmidt equations of seventh order
    Al-Smadi, Mohammed
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021,
  • [40] Controllability of neutral impulsive fractional differential equations with Atangana-Baleanu-Caputo derivatives
    Bedi, Pallavi
    Kumar, Anoop
    Khan, Aziz
    CHAOS SOLITONS & FRACTALS, 2021, 150