Solution of fractional Sawada-Kotera-Ito equation using Caputo and Atangana-Baleanu derivatives

被引:13
|
作者
Khirsariya, Sagar R. [1 ]
Rao, Snehal B. [2 ]
机构
[1] Marwadi Univ, Dept Math, Rajkot, Gujarat, India
[2] Maharaja Sayajirao Univ Baroda, Fac Technol & Engn, Dept Appl Math, Vadodara, Gujarat, India
关键词
Adomian decomposition method; Atangana-Baleanu fractional derivative; Caputo fractional derivative; fractional partial differential equation; fractional-order Sawada-Kotera-Ito equation; Shehu transform; DECOMPOSITION METHOD; DIFFERENTIAL-EQUATIONS; MODEL; SIMULATIONS; EXISTENCE; SYSTEM;
D O I
10.1002/mma.9438
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present work, the fractional-order Sawada-Kotera-Ito problem is solved by considering nonlocal Caputo and nonsingular Atangana-Baleanu (ABC) derivatives. The methodology used is an application of the Shehu transform and the Adomian decomposition method. The obtained solution is more accurate when using the ABC type derivative as compared to the Caputo sense, when using the proposed ADShTM method (Adomian decomposition Shehu transform method). The results so obtained by the ADShTM using Caputo and ABC operators are compared, establishing the superiority of the proposed method. The numerical results demonstrate that the application of the ABC derivative is not only relatively more effective and reliable but also straightforward to achieve high precision solution.
引用
收藏
页码:16072 / 16091
页数:20
相关论文
共 50 条
  • [11] Abundant closed form solutions of the conformable time fractional Sawada-Kotera-Ito equation using (G′/G)-expansion method
    Al-Shawba, Altaf Abdulkarem
    Gepreel, K. A.
    Abdullah, F. A.
    Azmi, A.
    RESULTS IN PHYSICS, 2018, 9 : 337 - 343
  • [12] New analytical technique to solve fractional-order Sharma-Tasso-Olver differential equation using Caputo and Atangana-Baleanu derivative operators
    Chauhan, Jignesh P.
    Khirsariya, Sagar R.
    Hathiwala, Gautam S.
    Biswas Hathiwala, Minakshi
    JOURNAL OF APPLIED ANALYSIS, 2024, 30 (01) : 1 - 16
  • [13] The fuzzy fractional SIQR model of computer virus propagation in wireless sensor network using Caputo Atangana-Baleanu derivatives
    Nguyen Phuong Dong
    Hoang Viet Long
    Nguyen Long Giang
    FUZZY SETS AND SYSTEMS, 2022, 429 : 28 - 59
  • [14] MODELING AND APPLICATIONS OF FRACTIONAL-ORDER MUTUAL INDUCTANCE BASED ON ATANGANA-BALEANU AND CAPUTO-FABRIZIO FRACTIONAL DERIVATIVES
    Liao, Xiaozhong
    Lin, Da
    Yu, Donghui
    Ran, Manjie
    Dong, Lei
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (04)
  • [15] On the chaotic nature of the Rabinovich system through Caputo and Atangana-Baleanu-Caputo fractional derivatives
    Deressa, Chernet Tuge
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2022, 2022 (01):
  • [16] Fuzzy fractional delay integro-differential equation with the generalized Atangana-Baleanu fractional derivative
    Wang, Guotao
    Feng, Meihua
    Zhao, Xianghong
    Yuan, Hualei
    DEMONSTRATIO MATHEMATICA, 2024, 57 (01)
  • [17] ANALOG IMPLEMENTATION OF FRACTIONAL-ORDER ELECTRIC ELEMENTS USING CAPUTO-FABRIZIO AND ATANGANA-BALEANU DEFINITIONS
    Liao, Xiaozhong
    Lin, Da
    Dong, Lei
    Ran, Manjie
    Yu, Donghui
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (07)
  • [18] STABILITY OF NONLINEAR HYBRID FRACTIONAL DIFFERENTIAL EQUATION WITH ATANGANA-BALEANU OPERATOR
    Britto Jacob, S.
    George Maria, A.
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2022, 26 (01): : 1 - 19
  • [19] Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative
    Almalahi, Mohammed A.
    Panchal, Satish K.
    Jarad, Fahd
    Abdo, Mohammed S.
    Shah, Kamal
    Abdeljawad, Thabet
    AIMS MATHEMATICS, 2022, 7 (09): : 15994 - 16016
  • [20] Mathematical structure of mosaic disease using microbial biostimulants via Caputo and Atangana-Baleanu derivatives
    Kumar, Pushpendra
    Erturk, Vedat Suat
    Almusawa, Hassan
    RESULTS IN PHYSICS, 2021, 24