Solution of fractional Sawada-Kotera-Ito equation using Caputo and Atangana-Baleanu derivatives

被引:13
|
作者
Khirsariya, Sagar R. [1 ]
Rao, Snehal B. [2 ]
机构
[1] Marwadi Univ, Dept Math, Rajkot, Gujarat, India
[2] Maharaja Sayajirao Univ Baroda, Fac Technol & Engn, Dept Appl Math, Vadodara, Gujarat, India
关键词
Adomian decomposition method; Atangana-Baleanu fractional derivative; Caputo fractional derivative; fractional partial differential equation; fractional-order Sawada-Kotera-Ito equation; Shehu transform; DECOMPOSITION METHOD; DIFFERENTIAL-EQUATIONS; MODEL; SIMULATIONS; EXISTENCE; SYSTEM;
D O I
10.1002/mma.9438
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present work, the fractional-order Sawada-Kotera-Ito problem is solved by considering nonlocal Caputo and nonsingular Atangana-Baleanu (ABC) derivatives. The methodology used is an application of the Shehu transform and the Adomian decomposition method. The obtained solution is more accurate when using the ABC type derivative as compared to the Caputo sense, when using the proposed ADShTM method (Adomian decomposition Shehu transform method). The results so obtained by the ADShTM using Caputo and ABC operators are compared, establishing the superiority of the proposed method. The numerical results demonstrate that the application of the ABC derivative is not only relatively more effective and reliable but also straightforward to achieve high precision solution.
引用
收藏
页码:16072 / 16091
页数:20
相关论文
共 50 条
  • [1] Implementation of Analytical Techniques for the Solution of Nonlinear Fractional Order Sawada-Kotera-Ito Equation
    Shah, Rasool
    Mofarreh, Fatemah
    Tag, ElSayed M.
    Ghamry, Nivin A.
    FRACTAL AND FRACTIONAL, 2023, 7 (04)
  • [2] Freelance Model with Atangana-Baleanu Caputo Fractional Derivative
    Khan, Fareeha Sami
    Khalid, M.
    Al-moneef, Areej A.
    Ali, Ali Hasan
    Bazighifan, Omar
    SYMMETRY-BASEL, 2022, 14 (11):
  • [3] Behavioural study of symbiosis dynamics via the Caputo and Atangana-Baleanu fractional derivatives
    Owolabi, Kolade M.
    CHAOS SOLITONS & FRACTALS, 2019, 122 : 89 - 101
  • [4] Comparison of Caputo and Atangana-Baleanu fractional derivatives for the pseudohyperbolic telegraph differential equations
    Modanli, Mahmut
    PRAMANA-JOURNAL OF PHYSICS, 2021, 96 (01):
  • [5] Inverse problem for the Atangana-Baleanu fractional differential equation
    Ruhil, Santosh
    Malik, Muslim
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2023, 31 (05): : 763 - 779
  • [6] On the wave solutions of time-fractional Sawada-Kotera-Ito equation arising in shallow water
    Jena, Rajarama Mohan
    Chakraverty, Snehashish
    Jena, Subrat Kumar
    Sedighi, Hamid M.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (01) : 583 - 592
  • [7] Numerical patterns in reaction-diffusion system with the Caputo and Atangana-Baleanu fractional derivatives
    Owolabi, Kolade M.
    CHAOS SOLITONS & FRACTALS, 2018, 115 : 160 - 169
  • [8] Application of the Caputo-Fabrizio and Atangana-Baleanu fractional derivatives to mathematical model of cancer chemotherapy effect
    Fabian Morales-Delgado, Victor
    Francisco Gomez-Aguilar, Jose
    Saad, Khaled
    Escobar Jimenez, Ricardo Fabricio
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (04) : 1167 - 1193
  • [9] On the Solutions of the Fractional-Order Sawada-Kotera-Ito Equation and Modeling Nonlinear Structures in Fluid Mediums
    Yasmin, Humaira
    Abu Hammad, Ma'mon
    Shah, Rasool
    Alotaibi, Badriah M.
    Ismaeel, Sherif. M. E.
    El-Tantawy, Samir A.
    SYMMETRY-BASEL, 2023, 15 (03):
  • [10] Fractional Herglotz variational problems with Atangana-Baleanu fractional derivatives
    Zhang, Jianke
    Yin, Luyang
    Zhou, Chang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,