Fracture toughness determination and mechanism for mode-I interlaminar failure of 3D-printed carbon-Kevlar composites

被引:12
|
作者
Dang, Zhilong [1 ]
Cao, Junchao [1 ]
Pagani, Alfonso [2 ]
Zhang, Chao [1 ,3 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, Dept Aeronaut Struct Engn, Xian 710072, Shaanxi, Peoples R China
[2] Politecn Torino, Dept Mech & Aerosp Engn, Mul2 Lab, Turin, Italy
[3] Northwestern Polytech Univ, Sch Civil Aviat, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Additive manufacturing; Interlaminar fracture toughness; Kevlar fiber; Hybrid fiber interface; Fiber bridging; DELAMINATION GROWTH; R-CURVE;
D O I
10.1016/j.coco.2023.101532
中图分类号
TB33 [复合材料];
学科分类号
摘要
Additive manufacturing for continuous fiber composite exhibits great potential for the fabrication of sophisti-cated structural components. Nevertheless, interlaminar characteristics of printed parts have remained an open research question. This study aims to evaluate the mode-I interlaminar fracture property of 3D-printed contin-uous fiber reinforced composites with different interlaminar interfaces adopting carbon and Kevlar fiber. Three different double cantilever beam (DCB) configurations are considered, including carbon/carbon, Kevlar/Kevlar and carbon/Kevlar hybrid interface. It is observed that the interlaminar failure of carbon fiber was seriously affected by the void defects caused by 3D-printed. It is further found that Kevlar fiber could greatly improve the interlaminar fracture toughness attributed to the better bonding of interlayers and the denser bridging fiber. Finally, a novel idea for the hybrid interface is provided based on the characterization study of the carbon-Kevlar composites.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Analysis of hygrothermal effects on mixed mode I/II interlaminar fracture toughness of carbon composites joints
    Sales, R. C. M.
    de Suosa, A. F.
    Brito, C. B. G.
    Sena, J. L. S.
    Silveira, N. N. A.
    Candido, G. M.
    Donadon, M., V
    INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES, 2020, 97
  • [42] Improvement of Mode I Interlaminar Fracture Toughness of Stitched Glass/Epoxy Composites
    Goektas, D.
    Kennon, W. R.
    Potluri, P.
    APPLIED COMPOSITE MATERIALS, 2017, 24 (02) : 351 - 375
  • [43] Mode I interlaminar fracture toughness properties of advanced textile fibreglass composites
    Mouritz, AP
    Baini, C
    Herszberg, I
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 1999, 30 (07) : 859 - 870
  • [44] Mechanism based failure of 3D-printed continuous carbon fiber reinforced thermoplastic composites
    Dutra, Thiago Assis
    Ferreira, Rafael Thiago Luiz
    Resende, Hugo Borelli
    Blinzler, Brina Jane
    Asp, Leif E.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2021, 213
  • [45] Improvement of mode I interlaminar fracture toughness of composites reinforced by ultrathin fibers
    School of Aeronautics, Astronautics and Mechanics, Tongji University, Shanghai 200092, China
    Fuhe Cailiao Xuebao, 2007, 4 (166-171):
  • [46] Improvement of Mode I Interlaminar Fracture Toughness of Stitched Glass/Epoxy Composites
    D. Göktaş
    W. R. Kennon
    P. Potluri
    Applied Composite Materials, 2017, 24 : 351 - 375
  • [47] Effect of the loading rate on mode I interlaminar fracture toughness of laminated composites
    Hug, G.
    Thevenet, P.
    Fitoussi, J.
    Baptiste, D.
    ENGINEERING FRACTURE MECHANICS, 2006, 73 (16) : 2456 - 2462
  • [48] Prediction of Mode I interlaminar fracture toughness of stitched flax fiber composites
    M. Ravandi
    W. S. Teo
    M. S. Yong
    T. E. Tay
    Journal of Materials Science, 2018, 53 : 4173 - 4188
  • [49] Prediction of Mode I interlaminar fracture toughness of stitched flax fiber composites
    Ravandi, M.
    Teo, W. S.
    Yong, M. S.
    Tay, T. E.
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (06) : 4173 - 4188
  • [50] Mode-I interlaminar fracture behaviour of weft-knitted fabric reinforced composites
    Kim, KY
    Curiskis, JI
    Ye, L
    Fu, SY
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2005, 36 (07) : 954 - 964