On H 2-solutions for a Camassa-Holm type equation

被引:6
|
作者
Coclite, Giuseppe Maria [1 ]
di Ruvo, Lorenzo [2 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, Bari, Italy
[2] Univ Bari, Dipartimento Matemat, Bari, Italy
来源
OPEN MATHEMATICS | 2023年 / 21卷 / 01期
关键词
existence; uniqueness; stability; Camassa-Holm type equation; Cauchy problem; GLOBAL WEAK SOLUTIONS; SHALLOW-WATER EQUATION; SINGULAR LIMIT PROBLEM; TRAVELING-WAVE SOLUTIONS; BLOW-UP PHENOMENA; WELL-POSEDNESS; INTEGRABLE EQUATION; CONSERVATIVE SOLUTIONS; CAUCHY-PROBLEM; DISCONTINUOUS SOLUTIONS;
D O I
10.1515/math-2022-0577
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Camassa-Holm type equations arise as models for the unidirectional propagation of shallow water waves over a flat bottom. They also describe finite length, small amplitude radial deformation waves in cylindrical compressible hyperelastic rods. Under appropriate assumption on the initial data, on the time T T , and on the coefficients of such equation, we prove the well-posedness of the classical solutions for the Cauchy problem.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] On a Stochastic Camassa-Holm Type Equation with Higher Order Nonlinearities
    Rohde, Christian
    Tang, Hao
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2021, 33 (04) : 1823 - 1852
  • [42] BLOW-UP OF SOLUTIONS TO THE PERIODIC MODIFIED CAMASSA-HOLM EQUATION WITH VARYING LINEAR DISPERSION
    Zhu, Min
    Zhang, Shuanghu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (12) : 7235 - 7256
  • [43] On Invariant-Preserving Finite Difference Schemes for the Camassa-Holm Equation and the Two-Component Camassa-Holm System
    Liu, Hailiang
    Pendleton, Terrance
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 19 (04) : 1015 - 1041
  • [44] An interacting system of the Camassa-Holm and Degasperis-Procesi equations
    Wang, Mingxin
    Yu, Shengqi
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (06)
  • [45] ON A THREE-COMPONENT CAMASSA-HOLM EQUATION WITH PEAKONS
    Mi, Yongsheng
    Mu, Chunlai
    KINETIC AND RELATED MODELS, 2014, 7 (02) : 305 - 339
  • [46] Stability of peakons for the generalized modified Camassa-Holm equation
    Guo, Zihua
    Liu, Xiaochuan
    Liu, Xingxing
    Qu, Changzheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (12) : 7749 - 7779
  • [47] Lower order regularity for the generalized Camassa-Holm equation
    Mi, Yongsheng
    Guo, Boling
    Mu, Chunlai
    APPLICABLE ANALYSIS, 2017, 96 (07) : 1126 - 1137
  • [48] Stability of periodic peakons for the modified μ-Camassa-Holm equation
    Liu, Yue
    Qu, Changzheng
    Zhang, Ying
    PHYSICA D-NONLINEAR PHENOMENA, 2013, 250 : 66 - 74
  • [49] Well-posedness, travelling waves and geometrical aspects of generalizations of the Camassa-Holm equation
    da Silva, Priscila Leal
    Freire, Igor Leite
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (09) : 5318 - 5369
  • [50] A note on the solution map for the periodic Camassa-Holm equation
    Tang, Hao
    Zhao, Yongye
    Liu, Zhengrong
    APPLICABLE ANALYSIS, 2014, 93 (08) : 1745 - 1760