共 50 条
On H 2-solutions for a Camassa-Holm type equation
被引:6
|作者:
Coclite, Giuseppe Maria
[1
]
di Ruvo, Lorenzo
[2
]
机构:
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, Bari, Italy
[2] Univ Bari, Dipartimento Matemat, Bari, Italy
来源:
OPEN MATHEMATICS
|
2023年
/
21卷
/
01期
关键词:
existence;
uniqueness;
stability;
Camassa-Holm type equation;
Cauchy problem;
GLOBAL WEAK SOLUTIONS;
SHALLOW-WATER EQUATION;
SINGULAR LIMIT PROBLEM;
TRAVELING-WAVE SOLUTIONS;
BLOW-UP PHENOMENA;
WELL-POSEDNESS;
INTEGRABLE EQUATION;
CONSERVATIVE SOLUTIONS;
CAUCHY-PROBLEM;
DISCONTINUOUS SOLUTIONS;
D O I:
10.1515/math-2022-0577
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Camassa-Holm type equations arise as models for the unidirectional propagation of shallow water waves over a flat bottom. They also describe finite length, small amplitude radial deformation waves in cylindrical compressible hyperelastic rods. Under appropriate assumption on the initial data, on the time T T , and on the coefficients of such equation, we prove the well-posedness of the classical solutions for the Cauchy problem.
引用
收藏
页数:21
相关论文