On H 2-solutions for a Camassa-Holm type equation

被引:6
|
作者
Coclite, Giuseppe Maria [1 ]
di Ruvo, Lorenzo [2 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, Bari, Italy
[2] Univ Bari, Dipartimento Matemat, Bari, Italy
来源
OPEN MATHEMATICS | 2023年 / 21卷 / 01期
关键词
existence; uniqueness; stability; Camassa-Holm type equation; Cauchy problem; GLOBAL WEAK SOLUTIONS; SHALLOW-WATER EQUATION; SINGULAR LIMIT PROBLEM; TRAVELING-WAVE SOLUTIONS; BLOW-UP PHENOMENA; WELL-POSEDNESS; INTEGRABLE EQUATION; CONSERVATIVE SOLUTIONS; CAUCHY-PROBLEM; DISCONTINUOUS SOLUTIONS;
D O I
10.1515/math-2022-0577
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Camassa-Holm type equations arise as models for the unidirectional propagation of shallow water waves over a flat bottom. They also describe finite length, small amplitude radial deformation waves in cylindrical compressible hyperelastic rods. Under appropriate assumption on the initial data, on the time T T , and on the coefficients of such equation, we prove the well-posedness of the classical solutions for the Cauchy problem.
引用
收藏
页数:21
相关论文
共 50 条