On H 2-solutions for a Camassa-Holm type equation

被引:6
|
作者
Coclite, Giuseppe Maria [1 ]
di Ruvo, Lorenzo [2 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, Bari, Italy
[2] Univ Bari, Dipartimento Matemat, Bari, Italy
来源
OPEN MATHEMATICS | 2023年 / 21卷 / 01期
关键词
existence; uniqueness; stability; Camassa-Holm type equation; Cauchy problem; GLOBAL WEAK SOLUTIONS; SHALLOW-WATER EQUATION; SINGULAR LIMIT PROBLEM; TRAVELING-WAVE SOLUTIONS; BLOW-UP PHENOMENA; WELL-POSEDNESS; INTEGRABLE EQUATION; CONSERVATIVE SOLUTIONS; CAUCHY-PROBLEM; DISCONTINUOUS SOLUTIONS;
D O I
10.1515/math-2022-0577
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Camassa-Holm type equations arise as models for the unidirectional propagation of shallow water waves over a flat bottom. They also describe finite length, small amplitude radial deformation waves in cylindrical compressible hyperelastic rods. Under appropriate assumption on the initial data, on the time T T , and on the coefficients of such equation, we prove the well-posedness of the classical solutions for the Cauchy problem.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] A Note on a Camassa-Holm Type Equation
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2025, 14 (02) : 299 - 311
  • [2] Global solutions for the generalized Camassa-Holm equation
    Chen, Lina
    Guan, Chunxia
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 58
  • [3] On the classical solutions for the high order Camassa-Holm type equations
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (01)
  • [4] The Uniqueness of Strong Solutions for the Camassa-Holm Equation
    Wu, Meng
    Lai, Chong
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [5] Solutions of the Camassa-Holm Equation Near the Soliton
    Ding, Dan-ping
    Lu, Wei
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2023, 39 (02): : 450 - 464
  • [6] Global weak solutions for a generalized Camassa-Holm equation
    Tu, Xi
    Yin, Zhaoyang
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (16) : 2457 - 2475
  • [7] Global solutions for the modified Camassa-Holm equation
    Ji, Shuguan
    Zhou, Yonghui
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (10):
  • [8] The local and global existence of solutions for a generalized Camassa-Holm equation
    Lai, Shao Yong
    Li, Nan
    Zhang, Jian
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (04) : 757 - 776
  • [9] Generic Regularity of Conservative Solutions to the Rotational Camassa-Holm Equation
    Yang, Shaojie
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2020, 22 (04)
  • [10] The existence of global weak solutions for a generalized Camassa-Holm equation
    Tu, Xi
    Yin, Zhaoyang
    APPLICABLE ANALYSIS, 2022, 101 (03) : 810 - 823