Binocular benefit following monocular subretinal AAV injection in a mouse model of autosomal dominant retinitis pigmentosa (adRP)

被引:5
|
作者
Ahmeda, Chulbul M. [1 ]
Massengill, Michael T. [1 ,4 ]
Ildefonso, Cristhian J. [2 ]
Jalligampala, Archana [3 ]
Zhu, Ping [2 ]
Li, Hung [1 ]
Patel, Anil P. [1 ]
McCall, Maureen A. [3 ]
Lewin, Alfred S. [1 ]
机构
[1] Univ Florida, Dept Mol Genet & Microbiol, Gainesville, FL 32603 USA
[2] Univ Florida, Dept Ophthalmol, Gainesville, FL USA
[3] Univ Louisville, Dept Ophthalmol & Visual Sci, Louisville, KY USA
[4] Illinois Eye & Far Infirm, Dept Opbthalmol, Chicago, IL USA
关键词
Rhodopsin; Retinitis pigmentosa; AAV; RNA interference; REPLACEMENT GENE-THERAPY; PHOTORECEPTOR DEGENERATION; RETINAL DEGENERATION; RHODOPSIN MUTATION; TRANSGENIC MICE; LIGHT EXPOSURE; MURINE MODEL; CELL-DEATH; RAT MODEL; VECTOR;
D O I
10.1016/j.visres.2023.108189
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Autcsomal dominant pigmentosa (adRP) is fr=,;iota iota epsilon ntly caust d by mutations in t:HU, the gene toi rhodopsin. In previous expetiments in dugs with the 14R mutation in RHO, an AAV2/5 vector expressing an s1iRNA directed to human and dog RHO mRNA and an shRNA-resistant human RHO cDNA (AAV-RHO820shRNA820) prevented retinal degeneration for mote than eight months fohowing injection. It is crucial, however, to detemine if this RNA replacernent vector acts in a mutation-independent and species-independent mannet. We, theretore, injected mice transgenic for human P23H RHO with this vector unilaterally at postnatal day 30. We monitored their retinal stnicture by using spectral-domain optica! coherence tomography (SD-OCT) and retinal function using electroretinogiuphy (ERG) for nine months. We compared these to P23H RHO transgenic rnice injected unilaterally with a control vector. Though retinas continued to thin over time, compared to conuol injected eyes, treatment with AAV-RII0820-shRNA820 slowed the loss of photoreceptor cells and the decrease in ERG amplitudes duting the nine-month snidy pefiod. Unexpectedly, we also observed the preservation of retinal snom-tire and function in the untreated contralateral eyes of AAV-RHO820-shRNA820 treated mice. PCR analysis and westem blots showed that a low amount of vector front injected eyes was presen in uninjected eyes. In addition, protective neurottophic factom bFGF and GDNF were elevated in both eyes of treated ritke. Otu finding suggests that using this or similar RNA replacement vectors in human gene therapy may provide clinical benefit to both eyes of patients with adRP.
引用
收藏
页数:14
相关论文
共 48 条
  • [1] Improved Retinal Function in a Mouse Model of Dominant Retinitis Pigmentosa Following AAV-delivered Gene Therapy
    Chadderton, Naomi
    Millington-Ward, Sophia
    Palfi, Arpad
    O'Reilly, Mary
    Tuohy, Gearoid
    Humphries, Marian M.
    Li, Tiansen
    Humphries, Peter
    Kenna, Paul F.
    Farrar, G. Jane
    MOLECULAR THERAPY, 2009, 17 (04) : 593 - 599
  • [2] Clinical and genetic aspects of two Spanish families with autosomal dominant retinitis pigmentosa (ADRP)
    Vilela, C
    Beneyto, M
    Bosch, R
    Millan, JM
    Marco, M
    Vallet, M
    Alonso, L
    Tormos, I
    Najera, C
    Valls, B
    Paricio, N
    Prieto, F
    OPHTHALMIC GENETICS, 1996, 17 (01): : 29 - 33
  • [3] Aggregation of rhodopsin mutants in mouse models of autosomal dominant retinitis pigmentosa
    Vasudevan, Sreelakshmi
    Senapati, Subhadip
    Pendergast, Maryanne
    Park, Paul S. -H.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [4] Sectoral activation of glia in an inducible mouse model of autosomal dominant retinitis pigmentosa
    Massengill, Michael T.
    Ash, Neil F.
    Young, Brianna M.
    Ildefonso, Cristhian J.
    Lewin, Alfred S.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [5] Clinically Relevant Outcome Measures for the I307N Rhodopsin Mouse: A Model of Inducible Autosomal Dominant Retinitis Pigmentosa
    Massengill, Michael T.
    Young, Brianna
    Patel, Deep
    Jafri, Farwa
    Sabogal, Ernesto
    Ash, Neil
    Li, Hong
    Ildefonso, Cristhian J.
    Lewin, Alfred S.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (13) : 5417 - 5430
  • [6] Suppression and Replacement Gene Therapy for Autosomal Dominant Disease in a Murine Model of Dominant Retinitis Pigmentosa
    Millington-Ward, Sophia
    Chadderton, Naomi
    O'Reilly, Mary
    Palfi, Arpad
    Goldmann, Tobias
    Kilty, Claire
    Humphries, Marian
    Wolfrum, Uwe
    Bennett, Jean
    Humphries, Peter
    Kenna, Paul F.
    Farrar, G. Jane
    MOLECULAR THERAPY, 2011, 19 (04) : 642 - 649
  • [7] Genotype and Phenotype Studies in Autosomal Dominant Retinitis Pigmentosa (adRP) of the French Canadian Founder Population
    Coussa, Razek Georges
    Chakarova, Christina
    Ajlan, Radwan
    Taha, Mohammed
    Kavalec, Conrad
    Gomolin, Julius
    Khan, Ayesha
    Lopez, Irma
    Ren, Huanan
    Waseem, Naushin
    Kamenarova, Kunka
    Bhattacharya, Shomi S.
    Koenekoop, Robert K.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2015, 56 (13) : 8297 - 8305
  • [8] TNFa knockdown in the retina promotes cone survival in a mouse model of autosomal dominant retinitis pigmentosa
    Rana, Tapasi
    Kotla, Pravallika
    Fullard, Roderick
    Gorbatyuk, Marina
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2017, 1863 (01): : 92 - 102
  • [9] CRISPR genome surgery in a novel humanized model for autosomal dominant retinitis pigmentosa
    Wu, Wen-Hsuan
    Tsai, Yi-Ting
    Huang, I-Wen
    Cheng, Chia-Hua
    Hsu, Chun-Wei
    Cui, Xuan
    Ryu, Joseph
    Quinn, Peter M. J.
    Caruso, Salvatore Marco
    Lin, Chyuang-Sheng
    Tsang, Stephen H.
    MOLECULAR THERAPY, 2022, 30 (04) : 1407 - 1420
  • [10] Erythropoietin Slows Photoreceptor Cell Death in a Mouse Model of Autosomal Dominant Retinitis Pigmentosa
    Rex, Tonia S.
    Kasmala, Lorraine
    Bond, Wesley S.
    Cerrillo, Ana M. de Lucas
    Wynn, Kristi
    Lewin, Alfred S.
    PLOS ONE, 2016, 11 (06):