Automated identification of myocardial perfusion defects in dynamic cardiac computed tomography using deep learning

被引:3
作者
Kim, Yoon-Chul [1 ]
Choe, Yeon Hyeon [2 ,3 ]
机构
[1] Yonsei Univ, Coll Software & Digital Healthcare Convergence, Div Digital Healthcare, Wonju, South Korea
[2] Sungkyunkwan Univ, Samsung Med Ctr, Dept Radiol, Sch Med, Seoul, South Korea
[3] Sungkyunkwan Univ, Samsung Med Ctr, Dept Radiol, Sch Med, 81 Irwon Ro, Seoul 06351, South Korea
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2023年 / 107卷
基金
新加坡国家研究基金会;
关键词
Computed tomography; Perfusion; Heart; Deep learning; FRACTIONAL FLOW RESERVE; BLOOD-FLOW; CT ANGIOGRAPHY; PERFORMANCE; NETWORKS; DISEASE;
D O I
10.1016/j.ejmp.2023.102555
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: The purpose of this study was to develop and evaluate deep convolutional neural network (CNN) models for quantifying myocardial blood flow (MBF) as well as for identifying myocardial perfusion defects in dynamic cardiac computed tomography (CT) images.Methods: Adenosine stress cardiac CT perfusion data acquired from 156 patients having or being suspected with coronary artery disease were considered for model development and validation. U-net-based deep CNN models were developed to segment the aorta and myocardium and to localize anatomical landmarks. Color-coded MBF maps were obtained in short-axis slices from the apex to the base level and were used to train a deep CNN classifier. Three binary classification models were built for the detection of perfusion defect in the left anterior descending artery (LAD), the right coronary artery (RCA), and the left circumflex artery (LCX) territories.Results: Mean Dice scores were 0.94 (+/- 0.07) and 0.86 (+/- 0.06) for the aorta and myocardial deep learning-based segmentations, respectively. With the localization U-net, mean distance errors were 3.5 (+/- 3.5) mm and 3.8 (+/- 2.4) mm for the basal and apical center points, respectively. The classification models identified perfusion defects with the accuracy of mean area under the receiver operating curve (AUROC) values of 0.959 (+/- 0.023) for LAD, 0.949 (+/- 0.016) for RCA, and 0.957 (+/- 0.021) for LCX.Conclusion: The presented method has the potential to fully automate the quantification of MBF and subsequently identify the main coronary artery territories with myocardial perfusion defects in dynamic cardiac CT perfusion.
引用
收藏
页数:8
相关论文
共 34 条
[1]   Multi-input deep learning approach for Cardiovascular Disease diagnosis using Myocardial Perfusion Imaging and clinical data [J].
Apostolopoulos, Ioannis D. ;
Apostolopoulos, Dimitris, I ;
Spyridonidis, Trifon, I ;
Papathanasiou, Nikolaos D. ;
Panayiotakis, George S. .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 84 :168-177
[2]   Artificial intelligence applications in medical imaging: A review of the medical physics research in Italy [J].
Avanzo, Michele ;
Porzio, Massimiliano ;
Lorenzon, Leda ;
Milan, Lisa ;
Sghedoni, Roberto ;
Russo, Giorgio ;
Massafra, Raffaella ;
Fanizzi, Annarita ;
Barucci, Andrea ;
Ardu, Veronica ;
Branchini, Marco ;
Giannelli, Marco ;
Gallio, Elena ;
Cilla, Savino ;
Tangaro, Sabina ;
Lombardi, Angela ;
Pirrone, Giovanni ;
De Martin, Elena ;
Giuliano, Alessia ;
Belmonte, Gina ;
Russo, Serenella ;
Rampado, Osvaldo ;
Mettivier, Giovanni .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 83 :221-241
[3]   Dynamic myocardial stress perfusion imaging using fast dual-source CT with alternating table positions: initial experience [J].
Bamberg, Fabian ;
Klotz, Ernst ;
Flohr, Thomas ;
Becker, Alexander ;
Becker, Christoph R. ;
Schmidt, Bernhard ;
Wintersperger, Bernd J. ;
Reiser, Maximilian F. ;
Nikolaou, Konstantin .
EUROPEAN RADIOLOGY, 2010, 20 (05) :1168-1173
[4]   Deep Learning for Prediction of Obstructive Disease From Fast Myocardial Perfusion SPECT A Multicenter Study [J].
Betancur, Julian ;
Commandeur, Frederic ;
Motlagh, Mahsaw ;
Sharir, Tali ;
Einstein, Andrew J. ;
Bokhari, Sabahat ;
Fish, Mathews B. ;
Ruddy, Terrence D. ;
Kaufmann, Philipp ;
Sinusas, Albert J. ;
Miller, Edward J. ;
Bateman, Timothy M. ;
Dorbala, Sharmila ;
Di Carli, Marcelo ;
Germano, Guido ;
Otaki, Yuka ;
Tamarappoo, Balaji K. ;
Dey, Damini ;
Berman, Daniel S. ;
Slomka, Piotr J. .
JACC-CARDIOVASCULAR IMAGING, 2018, 11 (11) :1654-1663
[5]   Fractional Flow Reserve Computed from Noninvasive CT Angiography Data: Diagnostic Performance of an On-Site Clinician-operated Computational Fluid Dynamics Algorithm [J].
Coenen, Adriaan ;
Lubbers, Marisa M. ;
Kurata, Akira ;
Kono, Atsushi ;
Dedic, Admir ;
Chelu, Raluca G. ;
Dijkshoorn, Marcel L. ;
Gijsen, Frank J. ;
Ouhlous, Mohamed ;
van Geuns, Robert-Jan M. ;
Nieman, Koen .
RADIOLOGY, 2015, 274 (03) :674-683
[6]   Direct Automatic Coronary Calcium Scoring in Cardiac and Chest CT [J].
de Vos, Bob D. ;
Wolterink, Jelmer M. ;
Leiner, Tim ;
de Jong, Pim A. ;
Lessmann, Nikolas ;
Isgum, Ivana .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (09) :2127-2138
[7]   Dynamic CT myocardial perfusion imaging: performance of 3D semi-automated evaluation software [J].
Ebersberger, Ullrich ;
Marcus, Roy P. ;
Schoepf, U. Joseph ;
Lo, Gladys G. ;
Wang, Yining ;
Blanke, Philipp ;
Geyer, Lucas L. ;
Gray, J. Cranston, III ;
McQuiston, Andrew D. ;
Cho, Young Jun ;
Scheuering, Michael ;
Canstein, Christian ;
Nikolaou, Konstantin ;
Hoffmann, Ellen ;
Bamberg, Fabian .
EUROPEAN RADIOLOGY, 2014, 24 (01) :191-199
[8]   Deep learning in spatiotemporal cardiac imaging: A review of methodologies and clinical usability [J].
Hernandez, Karen Andrea Lara ;
Rienmueller, Theresa ;
Baumgartner, Daniela ;
Baumgartner, Christian .
COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 130
[9]   Evaluation of transfer learning in deep convolutional neural network models for cardiac short axis slice classification [J].
Ho, Namgyu ;
Kim, Yoon-Chul .
SCIENTIFIC REPORTS, 2021, 11 (01)
[10]   Underestimation of myocardial blood flow by dynamic perfusion CT: Explanations by two-compartment model analysis and limited temporal sampling of dynamic CT [J].
Ishida, Masaki ;
Kitagawa, Kakuya ;
Ichihara, Takashi ;
Natsume, Takahiro ;
Nakayama, Ryohei ;
Nagasawa, Naoki ;
Kubooka, Makiko ;
Ito, Tatsuro ;
Uno, Mio ;
Goto, Yoshitaka ;
Nagata, Motonori ;
Sakuma, Hajime .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2016, 10 (03) :207-214