Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design

被引:130
作者
Wan, Hongli [1 ]
Wang, Zeyi [1 ]
Liu, Sufu [1 ]
Zhang, Bao [2 ]
He, Xinzi [1 ]
Zhang, Weiran [3 ]
Wang, Chunsheng [1 ]
机构
[1] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20740 USA
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore, Singapore
[3] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD USA
关键词
ELECTROLYTE; DYNAMICS;
D O I
10.1038/s41560-023-01231-w
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Critical current density (CCD) is currently used to evaluate Li dendrite-suppression capability of solid-state electrolytes (SSEs). However, CCD values vary with engineering parameters, resulting in a large deviation of CCD values for the same SSE. Herein we evaluate lithium dendrite-suppression capability of SSEs using critical interphase overpotential (CIOP). The CIOP is the intrinsic property of the interphase, which depends on electronic/ionic conductivity, lithiophobicity and mechanical strength. When the applied interphase overpotential (AIOP) is larger than CIOP, Li will grow into interphase as dendrites. To reduce AIOP but increase CIOP, we design a mix-conductive Li2NH-Mg interlayer between Li6PS5Cl SSE and Li-1.0 wt% La anode, which transfers into Li6PS5Cl/LiMgSx/LiH-Li3N/LiMgLa after Mg migration during annealing and activation cycles. The LiMgSx interphase increases the CIOP from similar to 10 mV (for Li6PS5Cl) to similar to 220 mV. The Li plates on the LiMgLa surface, and reversible penetration into formed porous LiH-Li3N reduces AIOP. The CIOP provides a design guideline for high-energy and room temperature all-solid-state lithium-metal batteries.
引用
收藏
页码:473 / 481
页数:9
相关论文
共 38 条
[1]   Sodium Plating from Na-β"-Alumina Ceramics at Room Temperature, Paving the Way for Fast-Charging All-Solid-State Batteries [J].
Bay, Marie-Claude ;
Wang, Michael ;
Grissa, Rabeb ;
Heinz, Meike V. F. ;
Sakarrloto, Jeff ;
Battaglia, Corsin .
ADVANCED ENERGY MATERIALS, 2020, 10 (03)
[2]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[3]   A new type of multibenzyloxy-wrapped porphyrin sensitizers for developing efficient dye-sensitized solar cells [J].
Chen, Yingying ;
Zeng, Kaiwen ;
Li, Chengjie ;
Liu, Xiujun ;
Xie, Yongshu .
JOURNAL OF PORPHYRINS AND PHTHALOCYANINES, 2020, 24 (1-3) :401-409
[4]   Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte [J].
Cheng, Eric Jianfeng ;
Sharafi, Asma ;
Sakamoto, Jeff .
ELECTROCHIMICA ACTA, 2017, 223 :85-91
[5]   In Situ Formed Ag-Li Intermetallic Layer for Stable Cycling of All-Solid-State Lithium Batteries [J].
Choi, Hong Jun ;
Kang, Dong Woo ;
Park, Jun-Woo ;
Park, Jun-Ho ;
Lee, Yoo-Jin ;
Ha, Yoon-Cheol ;
Lee, Sang-Min ;
Yoon, Seog Young ;
Kim, Byung Gon .
ADVANCED SCIENCE, 2022, 9 (01)
[6]   Unlocking the in situ Li plating dynamics and evolution mediated by diverse metallic substrates in all-solid-state batteries [J].
Cui, Can ;
Yang, Hui ;
Zeng, Cheng ;
Gui, Siwei ;
Liang, Jianing ;
Xiao, Ping ;
Wang, Shuhao ;
Huang, Guxin ;
Hu, Mingtao ;
Zhai, Tianyou ;
Li, Huiqiao .
SCIENCE ADVANCES, 2022, 8 (43)
[7]   In Situ Investigation of Chemomechanical Effects in Thiophosphate Solid Electrolytes [J].
Dixit, Marm B. ;
Singh, Nikhilendra ;
Horwath, James P. ;
Shevchenko, Pavel D. ;
Jones, Michael ;
Stach, Eric A. ;
Arthur, Timothy S. ;
Hatzell, Kelsey B. .
MATTER, 2020, 3 (06) :2138-2159
[8]   Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery [J].
Fan, Xiulin ;
Ji, Xiao ;
Han, Fudong ;
Yue, Jie ;
Chen, Ji ;
Chen, Long ;
Deng, Tao ;
Jiang, Jianjun ;
Wang, Chunsheng .
SCIENCE ADVANCES, 2018, 4 (12)
[9]   Suppressing Li Dendrite Formation in Li2S-P2S5 Solid Electrolyte by LiI Incorporation [J].
Han, Fudong ;
Yue, Jie ;
Zhu, Xiangyang ;
Wang, Chunsheng .
ADVANCED ENERGY MATERIALS, 2018, 8 (18)
[10]   INHOMOGENEOUS ELECTRON-GAS [J].
RAJAGOPAL, AK ;
CALLAWAY, J .
PHYSICAL REVIEW B, 1973, 7 (05) :1912-1919