Stock Market Analysis Using Time Series Relational Models for Stock Price Prediction

被引:17
|
作者
Zhao, Cheng [1 ]
Hu, Ping [2 ]
Liu, Xiaohui [2 ]
Lan, Xuefeng [3 ]
Zhang, Haiming [4 ]
机构
[1] Zhejiang Univ Technol, Sch Econ, Hangzhou 310023, Peoples R China
[2] Zhejiang Univ Technol, Coll Comp Sci & Technol, Hangzhou 310023, Peoples R China
[3] Zhejiang Univ Technol, Informatizat Off, Hangzhou 310023, Peoples R China
[4] Guangdong Univ Petrochem Technol, Students Affairs Div, Maoming 525000, Peoples R China
基金
中国国家自然科学基金;
关键词
stock price prediction; stock relationship; time series; long short-term memory; graph convolution neural networks; LSTM; ALGORITHM;
D O I
10.3390/math11051130
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The ability to predict stock prices is essential for informing investment decisions in the stock market. However, the complexity of various factors influencing stock prices has been widely studied. Traditional methods, which rely on time-series information for a single stock, are incomplete as they lack a holistic perspective. The linkage effect in the stock market, where stock prices are influenced by those of associated stocks, necessitates the use of more comprehensive data. Currently, stock relationship information is mainly obtained through industry classification data from third-party platforms, but these data are often approximate and subject to time lag. To address this, this paper proposes a time series relational model (TSRM) that integrates time and relationship information. The TSRM utilizes transaction data of stocks to automatically obtain stock classification through a K-means model and derives stock relationships. The time series information, extracted using long short-term memory (LSTM), and relationship information, extracted with a graph convolutional network (GCN), are integrated to predict stock prices. The TSRM was tested in the Chinese Shanghai and Shenzhen stock markets, with results showing an improvement in cumulative returns by 44% and 41%, respectively, compared to the baseline, and a reduction in maximum drawdown by 4.9% and 6.6%, respectively.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Prediction of Gold and Silver Stock Price using Ensemble Models
    Mahato, Pradeep Kumar
    Attar, Vahida
    2014 INTERNATIONAL CONFERENCE ON ADVANCES IN ENGINEERING AND TECHNOLOGY RESEARCH (ICAETR), 2014,
  • [42] Stock Price Prediction Using Facebook Prophet and Arima Models
    Garlapati, Anusha
    Krishna, Doredla Radha
    Garlapati, Kavya
    Yaswanth, Nandigama Mani Srikara
    Rahul, Udayagiri
    Narayanan, Gayathri
    2021 6TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2021,
  • [43] Stock Market Prediction for Time-series Forecasting using Prophet upon ARIMA
    Madhuri, Ch Raga
    Chinta, Mukesh
    Kumar, V. V. N. V. Phani
    2020 7TH IEEE INTERNATIONAL CONFERENCE ON SMART STRUCTURES AND SYSTEMS (ICSSS 2020), 2020, : 317 - 321
  • [44] Stock Market Trend Prediction Using High-Order Information of Time Series
    Wen, Min
    Li, Ping
    Zhang, Lingfei
    Chen, Yan
    IEEE ACCESS, 2019, 7 : 28299 - 28308
  • [45] Comparative Analysis of ARIMA and LSTM Models for Stock Price Prediction
    Panchal, Smit Anilkumar
    Ferdouse, Lilatul
    Sultana, Ajmery
    27TH IEEE/ACIS INTERNATIONAL SUMMER CONFERENCE ON SOFTWARE ENGINEERING ARTIFICIAL INTELLIGENCE NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING, SNPD 2024-SUMMER, 2024, : 240 - 244
  • [46] Stock Price Prediction Using News Sentiment Analysis
    Mohan, Saloni
    Mullapudi, Sahitya
    Sammeta, Sudheer
    Vijayvergia, Parag
    Anastasiu, David C.
    2019 IEEE FIFTH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (IEEE BIGDATASERVICE 2019), 2019, : 205 - 208
  • [47] STATIONARY TIME SERIES ANALYSIS AND COMMON STOCK PRICE FORECASTING
    SZATROWSKI, Z
    ANNALS OF MATHEMATICAL STATISTICS, 1949, 20 (01): : 133 - 134
  • [48] Stock Price Prediction based on Grey Relational Analysis and Support Vector Regression
    Hou, Xianxian
    Zhu, Shaohan
    Xia, Li
    Wu, Gang
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 2509 - 2513
  • [49] Time Interval Analysis on Price Prediction in Stock Market Based on General Regression Neural Networks
    Wang, Yong
    Xing, Hongjie
    ADVANCED RESEARCH ON ELECTRONIC COMMERCE, WEB APPLICATION, AND COMMUNICATION, PT 2, 2011, 144 : 160 - +
  • [50] Using Market News Sentiment Analysis for Stock Market Prediction
    Cristescu, Marian Pompiliu
    Nerisanu, Raluca Andreea
    Mara, Dumitru Alexandru
    Oprea, Simona-Vasilica
    MATHEMATICS, 2022, 10 (22)