Perturbations in non-flat cosmology for f(T) gravity

被引:37
作者
Bahamonde, Sebastian [1 ,2 ]
Dialektopoulos, Konstantinos F. [3 ,4 ]
Hohmann, Manuel [2 ]
Said, Jackson Levi [5 ,6 ]
Pfeifer, Christian [7 ]
Saridakis, Emmanuel N. [8 ,9 ]
机构
[1] Tokyo Inst Technol, Dept Phys, 1 12 1 Ookayama,Meguro ku, Tokyo 1528551, Japan
[2] Univ Tartu, Inst Phys, Lab Theoret Phys, W Ostwaldi 1, EE-50411 Tartu, Estonia
[3] Aristotle Univ Thessaloniki, Fac Engn, Lab Phys, Thessaloniki 54124, Greece
[4] Nazarbayev Univ, Dept Phys, 53 Kabanbay Batyr Ave, Astana 010000, Kazakhstan
[5] Univ Malta, Inst Space Sci & Astron, Msida, Malta
[6] Univ Malta, Dept Phys, Msida, Malta
[7] Univ Bremen, ZARM, D-28359 Bremen, Germany
[8] Natl Observ Athens, Lofos Nymfon, Athens 11852, Greece
[9] Univ Sci & Technol China, CAS Key Lab Res Galaxies & Cosmol, Hefei 230026, Anhui, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL C | 2023年 / 83卷 / 03期
关键词
Perturbation techniques - Relativity;
D O I
10.1140/epjc/s10052-023-11322-3
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The study of cosmological perturbation theory in f(T) gravity is a topic of great interest in teleparallel gravity since this is one of the simplest generalizations of the theory that modifies the teleparallel equivalent of general relativity. In this work, we explore the possibility of a non-flat FLRW background solution and perform perturbations for positively as well as negatively curved spatial geometries, together with a comparison to the flat case. We determine the generalized behaviour of the perturbative modes for this non-flat FLRW setting for arbitrary f(T) models, when the most general homogeneous and isotropic background tetrads are used. We also identify propagating modes in this setup, and relate this with the case of a flat cosmology.
引用
收藏
页数:17
相关论文
共 65 条
[1]   A GENERAL, GAUGE-INVARIANT ANALYSIS OF THE COSMIC MICROWAVE ANISOTROPY [J].
ABBOTT, LF ;
SCHAEFER, RK .
ASTROPHYSICAL JOURNAL, 1986, 308 (02) :546-562
[2]  
Addazi A., 2021, arXiv
[3]   Planck 2018 results: VI. Cosmological parameters [J].
Aghanim, N. ;
Akrami, Y. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Battye, R. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Carron, J. ;
Challinor, A. ;
Chiang, H. C. ;
Chluba, J. ;
Colombo, L. P. L. ;
Combet, C. ;
Contreras, D. ;
Crill, B. P. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Di Valentino, E. ;
Diego, J. M. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Dusini, S. ;
Efstathiou, G. ;
Elsner, F. ;
Ensslin, T. A. ;
Eriksen, H. K. ;
Fantaye, Y. .
ASTRONOMY & ASTROPHYSICS, 2020, 641
[4]  
Akrami Y., 2021, arXiv
[5]  
Aldrovandi R., 2013, Teleparallel Gravity: An Introduction
[6]  
Aldrovandi R., 1995, An Introduction to Geometrical Physics
[7]  
Bahamonde S., 2021, arXiv
[8]  
Bahamonde S., 2022, arXiv
[9]  
Bahamonde S, 2020, Arxiv, DOI arXiv:2003.11554
[10]  
Bahamonde S, 2021, Arxiv, DOI arXiv:2106.13793