An integrated solar-induced chlorophyll fluorescence model for more accurate soil organic carbon content estimation in an Alpine agricultural area

被引:1
作者
Yu, Qing [1 ,2 ]
Lu, Hongwei [1 ]
Yao, Tianci [3 ]
Feng, Wei [1 ,2 ]
Xue, Yuxuan [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Guangdong Acad Sci, Guangzhou Inst Geog, Guangzhou 510070, Peoples R China
关键词
Soil organic carbon; Solar-induced chlorophyll fluorescence; Land attributes; Landsat 8 operational land Imager data; Precision agriculture; INFRARED SPECTROSCOPY; RANDOM FOREST; MATTER; REFLECTANCE; RETRIEVAL; STOCKS; PREDICTION; GOME-2; REGION; SEQUESTRATION;
D O I
10.1007/s11104-022-05863-x
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Background and aims Solar-induced chlorophyll fluorescence (SIF) is closely related to vegetation photosynthesis and can sensitively reflect the growth and health of vegetation. Using the advantages of SIF in photosynthetic physiological diagnosis, this study carried out a collaborative study of SIF, land attrib-utes and image reflectance spectra to estimate soil organic carbon (SOC) content in typical agricultural areas of the Qinghai-Tibet plateau (QTP).Methods The spectral reflectance (R), first deriva-tive of reflectance (FDR), second derivative of reflectance (SDR) of spectral band of Landsat 8 Operational Land Imager (OLI) data were selected together with land attributes (i.e. elevation, slope, soil temperature, and soil moisture content) and SIF index and vegetation indices to establish the SOC content estimation models using the random forest (RF), back propagation neural network (BPNN) and partial least squares regression (PLSR), respectively.Results SIF index can significantly improve the SOC content estimation compared to the veg-etation indices. The accuracy of the BPNN model established by combining SIF index with the FDR of Landsat 8 OLI data and land attributes was the highest (R-2 = 0.977, RMSEC = 2.069 gmiddotkg(- 1), MAE = 0.945 gmiddotkg(- 1), RPD = 3.970, d-factor = 0.010). Conclusion This study confirmed the good effect of BPNN model driven by SIF index, land attributes, and Landsat 8 OLI data on the estimation of SOC content, which can provide a new way for the accu-rate estimation of the soil internal components in the agricultural areas.
引用
收藏
页码:235 / 252
页数:18
相关论文
共 71 条
  • [21] Influence of elevated soil temperature and biochar application on organic matter associated with aggregate-size and density fractions in an arable soil
    Grunwald, Dennis
    Kaiser, Michael
    Junker, Simone
    Marhan, Sven
    Piepho, Hans-Peter
    Poll, Christian
    Bamminger, Chris
    Ludwig, Bernard
    [J]. AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2017, 241 : 79 - 87
  • [22] Observed Changes of Koppen Climate Zones Based on High-Resolution Data Sets in the Qinghai-Tibet Plateau
    Guan, Yanlong
    Cui, Wenhui
    Liu, Junguo
    Lu, Hongwei
    Jiang, Yelin
    Xue, Yuxuan
    Heiskanen, Janne
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (23)
  • [23] Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements
    Guanter, Luis
    Frankenberg, Christian
    Dudhia, Anu
    Lewis, Philip E.
    Gomez-Dans, Jose
    Kuze, Akihiko
    Suto, Hiroshi
    Grainger, Roy G.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2012, 121 : 236 - 251
  • [24] Guo NJ, 2017, PEDOSPHERE, V27, P926, DOI [10.1016/S1002-0160(17)60383-7, 10.1016/s1002-0160(17)60383-7]
  • [25] Potential of hotspot solar-induced chlorophyll fluorescence for better tracking terrestrial photosynthesis
    Hao, Dalei
    Asrar, Ghassem R.
    Zeng, Yelu
    Yang, Xi
    Li, Xing
    Xiao, Jingfeng
    Guan, Kaiyu
    Wen, Jianguang
    Xiao, Qing
    Berry, Joseph A.
    Chen, Min
    [J]. GLOBAL CHANGE BIOLOGY, 2021, 27 (10) : 2144 - 2158
  • [26] HELLAND IS, 1990, SCAND J STAT, V17, P97
  • [27] Some perspectives on carbon sequestration in agriculture
    Hutchinson, J. J.
    Campbell, C. A.
    Desjardins, R. L.
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2007, 142 (2-4) : 288 - 302
  • [28] TM-Based SOC Models Augmented by Auxiliary Data for Carbon Crediting Programs in Semi-Arid Environments
    Jaber, Salahuddin M.
    Al-Qinna, Mohammed I.
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2017, 83 (06) : 447 - 457
  • [29] Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2
    Joiner, J.
    Guanter, L.
    Lindstrot, R.
    Voigt, M.
    Vasilkov, A. P.
    Middleton, E. M.
    Huemmrich, K. F.
    Yoshida, Y.
    Frankenberg, C.
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2013, 6 (10) : 2803 - 2823
  • [30] First observations of global and seasonal terrestrial chlorophyll fluorescence from space
    Joiner, J.
    Yoshida, Y.
    Vasilkov, A. P.
    Yoshida, Y.
    Corp, L. A.
    Middleton, E. M.
    [J]. BIOGEOSCIENCES, 2011, 8 (03) : 637 - 651