Marginal proportional hazards models for clustered interval-censored data with time-dependent covariates

被引:1
作者
Cook, Kaitlyn [1 ,2 ,3 ]
Lu, Wenbin [4 ]
Wang, Rui [2 ,3 ,5 ]
机构
[1] Smith Coll, Program Stat & Data Sci, Northampton, MA USA
[2] Harvard Pilgrim Hlth Care Inst, Dept Populat Med, Boston, MA 02215 USA
[3] Harvard Med Sch, Boston, MA 02115 USA
[4] North Carolina State Univ, Dept Stat, Raleigh, NC USA
[5] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
关键词
clustered failure time data; composite em algorithm; composite likelihood; HIV; interval censoring; marginal models; nonparametric likelihood; proportional hazards; semiparametric regression; time-dependent covariates; REGRESSION-ANALYSIS; EM ALGORITHM; INFERENCE;
D O I
10.1111/biom.13787
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Botswana Combination Prevention Project was a cluster-randomized HIV prevention trial whose follow-up period coincided with Botswana's national adoption of a universal test and treat strategy for HIV management. Of interest is whether, and to what extent, this change in policy modified the preventative effects of the study intervention. To address such questions, we adopt a stratified proportional hazards model for clustered interval-censored data with time-dependent covariates and develop a composite expectation maximization algorithm that facilitates estimation of model parameters without placing parametric assumptions on either the baseline hazard functions or the within-cluster dependence structure. We show that the resulting estimators for the regression parameters are consistent and asymptotically normal. We also propose and provide theoretical justification for the use of the profile composite likelihood function to construct a robust sandwich estimator for the variance. We characterize the finite-sample performance and robustness of these estimators through extensive simulation studies. Finally, we conclude by applying this stratified proportional hazards model to a re-analysis of the Botswana Combination Prevention Project, with the national adoption of a universal test and treat strategy now modeled as a time-dependent covariate.
引用
收藏
页码:1670 / 1685
页数:16
相关论文
共 32 条
[1]   Semiparametric regression analysis for clustered failure time data [J].
Cai, T ;
Wei, LJ ;
Wilcox, M .
BIOMETRIKA, 2000, 87 (04) :867-878
[2]   Inference for clustered data using the independence loglikelihood [J].
Chandler, Richard E. ;
Bate, Steven .
BIOMETRIKA, 2007, 94 (01) :167-183
[3]   A linear transformation model for multivariate interval-censored failure time data [J].
Chen, Man-Hua ;
Tong, Xingwei ;
Zhu, Liang .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2013, 41 (02) :275-290
[4]   Second-order estimating equations for the analysis of clustered current status data [J].
Cook, Richard J. ;
Tolusso, David .
BIOSTATISTICS, 2009, 10 (04) :756-772
[5]   Semiparametric Regression Analysis of Multiple Right- and Interval-Censored Events [J].
Gao, Fei ;
Zeng, Donglin ;
Couper, David ;
Lin, D. Y. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (527) :1232-1240
[6]  
Gao X, 2011, STAT SINICA, V21, P165
[7]   A Markov chain Monte Carlo EM algorithm for analyzing interval-censored data under the Cox proportional hazards model [J].
Goggins, WB ;
Finkelstein, DM ;
Schoenfeld, DA ;
Zaslavsky, AM .
BIOMETRICS, 1998, 54 (04) :1498-1507
[8]   A proportional hazards model for multivariate interval-censored failure time data [J].
Goggins, WB ;
Finkelstein, DM .
BIOMETRICS, 2000, 56 (03) :940-943
[9]   Simulating Duration Data for the Cox Model [J].
Harden, Jeffrey J. ;
Kropko, Jonathan .
POLITICAL SCIENCE RESEARCH AND METHODS, 2019, 7 (04) :921-928
[10]  
Hayes RJ., 2017, CLUSTER RANDOMISED T, V2nd, DOI DOI 10.1201/9781584888178