Generalization of Szasz operators involving multiple Sheffer polynomials

被引:2
作者
Ali, Mahvish [1 ]
Paris, Richard B. [2 ]
机构
[1] Jamia Millia Islamia, Fac Engn & Technol, Dept Appl Sci & Humanities, New Delhi 110025, India
[2] Abertay Univ, Dept Math, Dundee DD1 1HG, Scotland
关键词
Szasz operators; Modulus of continuity; Rate of convergence; Multiple Sheffer polynomials; HERMITE;
D O I
10.1007/s41478-022-00443-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present work deals with the mathematical investigation of some generalizations of the Szasz operators. In this work, the multiple Sheffer polynomials are introduced. The generalization of Szasz operators involving multiple Sheffer polynomials are considered. Convergence properties of these operators are verified with the help of the universal Korovkin-type result and the order of approximation is calculated by using classical modulus of continuity. Further, the convergence of these operators are also discussed in weighted spaces of functions on the positive semi-axis and estimate the approximation with the help of weighted modulus of continuity. The theoretical results are exemplified choosing the special cases of multiple Sheffer polynomials.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 22 条
[11]  
Jakimovski A., 1969, Mathematica (Cluj), V11, P97
[12]   Chlodowsky type generalization of (p,q)-Szasz operators involving Brenke type polynomials [J].
Kadak, Ugur ;
Mishra, Vishnu Narayan ;
Pandey, Shikha .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) :1443-1462
[13]   Approximation by Generalized Integral Favard-Szasz Type Operators Involving Sheffer Polynomials [J].
Karateke, Seda ;
Atakut, Cigdem ;
Buyukyazici, Ibrahim .
FILOMAT, 2019, 33 (07) :1921-1935
[14]   Recurrence Relations and Differential Equations of the Hermite-Sheffer and Related Hybrid Polynomial Sequences [J].
Khan, Subuhi ;
Naikoo, Shakeel Ahmad ;
Ali, Mahvish .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A4) :1607-1618
[15]   Some properties of Hermite-based Sheffer polynomials [J].
Khan, Subuhi ;
Al-Saad, Mustafa Walid ;
Yasmin, Ghazala .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (05) :2169-2183
[16]  
Korovkin PP, 1953, Doklady Akad. Nauk. SSSR (New Ser.), V90, P961
[17]   Properties of multiple Hermite and multiple Laguerre polynomials by the generating function [J].
Lee, D. W. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2007, 18 (12) :855-869
[18]   ON MULTIPLE APPELL POLYNOMIALS [J].
Lee, D. W. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (06) :2133-2141
[19]  
Sucu S, 2012, BULL MATH ANAL APPL, V4, P56
[20]   GENERALIZATION OF BERNSTEIN,S. POLYNOMIALS TO THE INFINITE INTERVAL [J].
SZASZ, O .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1950, 45 (03) :239-245