Szasz operators;
Modulus of continuity;
Rate of convergence;
Multiple Sheffer polynomials;
HERMITE;
D O I:
10.1007/s41478-022-00443-9
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The present work deals with the mathematical investigation of some generalizations of the Szasz operators. In this work, the multiple Sheffer polynomials are introduced. The generalization of Szasz operators involving multiple Sheffer polynomials are considered. Convergence properties of these operators are verified with the help of the universal Korovkin-type result and the order of approximation is calculated by using classical modulus of continuity. Further, the convergence of these operators are also discussed in weighted spaces of functions on the positive semi-axis and estimate the approximation with the help of weighted modulus of continuity. The theoretical results are exemplified choosing the special cases of multiple Sheffer polynomials.