Generalization of Szasz operators involving multiple Sheffer polynomials

被引:2
作者
Ali, Mahvish [1 ]
Paris, Richard B. [2 ]
机构
[1] Jamia Millia Islamia, Fac Engn & Technol, Dept Appl Sci & Humanities, New Delhi 110025, India
[2] Abertay Univ, Dept Math, Dundee DD1 1HG, Scotland
关键词
Szasz operators; Modulus of continuity; Rate of convergence; Multiple Sheffer polynomials; HERMITE;
D O I
10.1007/s41478-022-00443-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present work deals with the mathematical investigation of some generalizations of the Szasz operators. In this work, the multiple Sheffer polynomials are introduced. The generalization of Szasz operators involving multiple Sheffer polynomials are considered. Convergence properties of these operators are verified with the help of the universal Korovkin-type result and the order of approximation is calculated by using classical modulus of continuity. Further, the convergence of these operators are also discussed in weighted spaces of functions on the positive semi-axis and estimate the approximation with the help of weighted modulus of continuity. The theoretical results are exemplified choosing the special cases of multiple Sheffer polynomials.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 22 条
[1]   A matrix approach to Sheffer polynomials [J].
Aceto, Lidia ;
Cacao, Isabel .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (01) :87-100
[2]   Approximation by Jakimovski-Leviatan operators of Durrmeyer type involving multiple Appell polynomials [J].
Ansari, Khursheed J. ;
Mursaleen, M. ;
Rahman, Shagufta .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) :1007-1024
[3]   Approximation properties of the generalized Szasz operators by multiple Appell polynomials via power summability method [J].
Braha, Naim L. ;
Kadak, Ugur .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (05) :2337-2356
[4]   Some results on generalized Szasz operators involving Sheffer polynomials [J].
Costabile, Francesco Aldo ;
Gualtieri, Maria Italia ;
Napoli, Anna .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 337 :244-255
[5]   An algebraic approach to Sheffer polynomial sequences [J].
Costabile, Francesco Aldo ;
Longo, Elisabetta .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2014, 25 (04) :295-311
[6]   Sheffer polynomials, monomiality principle, algebraic methods and the theory of classical polynomials [J].
Dattoli, G. ;
Migliorati, M. ;
Srivastava, H. M. .
MATHEMATICAL AND COMPUTER MODELLING, 2007, 45 (9-10) :1033-1041
[7]  
Gadjiev A. D., 1974, Transl.Soviest Math. Dokl., V15, P1433
[8]   THEOREMS OF KOROVKIN TYPE [J].
GADZHIEV, AD .
MATHEMATICAL NOTES, 1976, 20 (5-6) :995-998
[9]  
Gavrea I., 1993, Rev. Anal. Numer. Theor. Approx., V22, P173
[10]  
Ismail M. E., 1974, Mathematica (Cluj), V39, P259