On the Multiple Illumination Numbers of Convex Bodies

被引:0
|
作者
Sriamorn, Kirati [1 ]
机构
[1] Chulalongkorn Univ, Fac Sci, Dept Math & Comp Sci, Bangkok, Thailand
关键词
Multiple illumination; Hadwiger covering; smooth boundary; cap body; spiky body; regular convex polygon; COVERING PROBLEM;
D O I
10.1007/s00025-024-02149-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce an m-fold illumination number Im(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I<^>m(K)$$\end{document} of a convex body K in Euclidean space Ed\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {E}<^>d$$\end{document}, which is the smallest number of directions required to m-fold illuminate K, i.e., each point on the boundary of K is illuminated by at least m directions. We get a lower bound of Im(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I<^>m(K)$$\end{document} for any d-dimensional convex body K, and get an upper bound of Im(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I<^>m(K)$$\end{document} for any d-dimensional convex body K with smooth boundary. We also prove that Im(K)=2m+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I<^>m(K)=2m+1$$\end{document}, for a 2-dimensional smooth convex body K. Furthermore, we obtain some results related to the m-fold illumination numbers of convex polygons and cap bodies of a d-dimensional unit ball Bd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {B}<^>d$$\end{document} in small dimensions. In particular, we show that , for a regular convex n-sided polygon P.
引用
收藏
页数:24
相关论文
共 6 条
  • [1] On the Multiple Illumination Numbers of Convex Bodies
    Kirati Sriamorn
    Results in Mathematics, 2024, 79
  • [2] On the illumination of centrally symmetric cap bodies in small dimensions
    Ivanov, Ilya
    Strachan, Cameron
    JOURNAL OF GEOMETRY, 2021, 112 (01)
  • [3] On the illumination of centrally symmetric cap bodies in small dimensions
    Ilya Ivanov
    Cameron Strachan
    Journal of Geometry, 2021, 112
  • [4] Reflection-mode multiple-illumination photoacoustic sensing to estimate optical properties
    Ranasinghesagara, Janaka C.
    Jiang, Yan
    Zemp, Roger J.
    PHOTOACOUSTICS, 2014, 2 (01): : 33 - 38
  • [5] Consecutively reconstructing absorption and scattering distributions in turbid media with multiple-illumination photoacoustic tomography
    Shao, Peng
    Harrison, Tyler J.
    Zemp, Roger J.
    JOURNAL OF BIOMEDICAL OPTICS, 2014, 19 (12)
  • [6] SMM: Self-supervised Multi-Illumination Color Constancy Model with Multiple Pretext Tasks
    Feng, Ziyu
    Xu, Zheming
    Qin, Haina
    Lang, Congyan
    Li, Bing
    Xiong, Weihua
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 8653 - 8661