AutoSeqRec: Autoencoder for Efficient Sequential Recommendation

被引:11
作者
Liu, Sijia [1 ]
Liu, Jiahao [1 ]
Gu, Hansu
Li, Dongsheng [2 ]
Lu, Tun [1 ]
Zhang, Peng [1 ]
Gu, Ning [1 ]
机构
[1] Fudan Univ, Shanghai, Peoples R China
[2] Microsoft Res Asia, Shanghai, Peoples R China
来源
PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023 | 2023年
基金
中国国家自然科学基金;
关键词
sequential recommendation; autoencoder; collaborative filtering;
D O I
10.1145/3583780.3614788
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sequential recommendation demonstrates the capability to recommend items by modeling the sequential behavior of users. Traditional methods typically treat users as sequences of items, overlooking the collaborative relationships among them. Graph-based methods incorporate collaborative information by utilizing the user-item interaction graph. However, these methods sometimes face challenges in terms of time complexity and computational efficiency. To address these limitations, this paper presents AutoSeqRec, an incremental recommendation model specifically designed for sequential recommendation tasks. AutoSeqRec is based on autoencoders and consists of an encoder and three decoders within the autoencoder architecture. These components consider both the user-item interaction matrix and the rows and columns of the item transition matrix. The reconstruction of the user-item interaction matrix captures user long-term preferences through collaborative filtering. In addition, the rows and columns of the item transition matrix represent the item out-degree and in-degree hopping behavior, which allows for modeling the user's short-term interests. When making incremental recommendations, only the input matrices need to be updated, without the need to update parameters, which makes AutoSeqRec very efficient. Comprehensive evaluations demonstrate that AutoSeqRec outperforms existing methods in terms of accuracy, while showcasing its robustness and efficiency.
引用
收藏
页码:1493 / 1502
页数:10
相关论文
共 42 条
[41]  
Zhu Y, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P3602
[42]   Embedding Temporal Network via Neighborhood Formation [J].
Zuo, Yuan ;
Liu, Guannan ;
Lin, Hao ;
Guo, Jia ;
Hu, Xiaoqian ;
Wu, Junjie .
KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, :2857-2866