Online Camera–LiDAR Calibration Monitoring and Rotational Drift Tracking

被引:0
作者
Moravec, Jaroslav [1 ]
Sara, Radim [1 ]
机构
[1] Czech Tech Univ, Fac Elect Engn, Dept Cybernet, Prague 16627, Czech Republic
关键词
Calibration and identification; computer vision for transportation; LiDAR-camera systems; sensor fusion; CAMERA; VISION; LIDAR;
D O I
10.1109/TRO.2023.3347130
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
The relative poses of visual perception sensors distributed over a vehicle's body may vary due to dynamic forces, thermal dilations, or minor accidents. This article proposes two methods, Online CAlibration MOnitoring (OCAMO) and LTO, that monitor and track the LiDAR-camera extrinsic calibration parameters online. Calibration monitoring provides a certificate for reference-calibration parameters validity. Tracking follows the calibration parameters drift in time. OCAMO is based on an adaptive online stochastic optimization with a memory of past evolution. LTO uses a fixed-grid search for the optimal parameters per frame and without memory. Both methods use low-level point-like features, a robust kernel-based loss function, and work with a small memory footprint and computational overhead. Both include a preselection of informative data, which limits their divergence. The statistical accuracy of both calibration monitoring methods is over 98%, whereas OCAMO monitoring can detect small decalibrations better, and LTO monitoring reacts faster on abrupt decalibrations. The tracking variants of both methods follow random calibration drift with an accuracy of about 0.03(degrees) in the yaw angle.
引用
收藏
页码:1527 / 1545
页数:19
相关论文
共 50 条
  • [31] External Parameter Calibration of Lidar and Camera Based on Line Feature
    Zheng, Wang
    Yu, Hongfei
    Lu, Jin
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (22)
  • [32] Calibration of Camera and Flash LiDAR System with a Triangular Pyramid Target
    Bu, Zean
    Sun, Changku
    Wang, Peng
    Dong, Hang
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (02): : 1 - 18
  • [33] Spatiotemporal Calibration of Camera-LiDAR Using Nonlinear Angular Constraints on Multiplanar Target
    Yoon, Sanghyun
    Ju, Sungha
    Nguyen, Hieu Minh
    Park, Sangyoon
    Heo, Joon
    [J]. IEEE SENSORS JOURNAL, 2022, 22 (11) : 10995 - 11005
  • [34] MSANet: LiDAR-Camera Online Calibration with Multi-Scale Fusion and Attention Mechanisms
    Xiong, Fengguang
    Zhang, Zhiqiang
    Kong, Yu
    Shen, Chaofan
    Hu, Mingyue
    Kuang, Liqun
    Han, Xie
    [J]. REMOTE SENSING, 2024, 16 (22)
  • [35] A Method for the Calibration of a LiDAR and Fisheye Camera System
    Martinez, Alvaro
    Santo, Antonio
    Ballesta, Monica
    Gil, Arturo
    Paya, Luis
    [J]. APPLIED SCIENCES-BASEL, 2025, 15 (04):
  • [36] Advancements in fusion calibration technology of lidar and camera
    Wang S.
    Meng Z.
    Gao N.
    Zhang Z.
    [J]. Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2023, 52 (08):
  • [37] A Camera-LiDAR Fusion Framework for Traffic Monitoring
    Sochaniwsky, Adrian
    Huangfu, Yixin
    Habibi, Saeid
    Von Mohrenschildt, Martin
    Ahmed, Ryan
    Bhuiyan, Mymoon
    Wyndham-West, Kyle
    Vidal, Carlos
    [J]. 2024 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO, ITEC 2024, 2024,
  • [38] A Step-By-Step Approach for Camera and Low-Resolution-3D-LiDAR Calibration
    Abbasi, Hasan
    Dey, Ankita
    Lama, Ian
    Sharifisoraki, Ziaaddin
    Ali, Ebrahim
    Amini, Marzieh
    Rajan, Sreeraman
    Greens, James
    Kwamena, Felix
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS, ICCE, 2023,
  • [39] LiDAR-Binocular Camera Calibration by Minimizing LiDAR Isotropic Error
    Chen Z.
    Liu Z.
    Zhang X.
    [J]. Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2023, 51 (02): : 1 - 9
  • [40] Automatic Extrinsic Calibration of a Camera and a 2D LiDAR With Point-Line Correspondences
    Kim, Jae-Yeul
    Ha, Jong-Eun
    [J]. IEEE ACCESS, 2023, 11 : 76904 - 76912