Online Camera–LiDAR Calibration Monitoring and Rotational Drift Tracking

被引:0
作者
Moravec, Jaroslav [1 ]
Sara, Radim [1 ]
机构
[1] Czech Tech Univ, Fac Elect Engn, Dept Cybernet, Prague 16627, Czech Republic
关键词
Calibration and identification; computer vision for transportation; LiDAR-camera systems; sensor fusion; CAMERA; VISION; LIDAR;
D O I
10.1109/TRO.2023.3347130
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
The relative poses of visual perception sensors distributed over a vehicle's body may vary due to dynamic forces, thermal dilations, or minor accidents. This article proposes two methods, Online CAlibration MOnitoring (OCAMO) and LTO, that monitor and track the LiDAR-camera extrinsic calibration parameters online. Calibration monitoring provides a certificate for reference-calibration parameters validity. Tracking follows the calibration parameters drift in time. OCAMO is based on an adaptive online stochastic optimization with a memory of past evolution. LTO uses a fixed-grid search for the optimal parameters per frame and without memory. Both methods use low-level point-like features, a robust kernel-based loss function, and work with a small memory footprint and computational overhead. Both include a preselection of informative data, which limits their divergence. The statistical accuracy of both calibration monitoring methods is over 98%, whereas OCAMO monitoring can detect small decalibrations better, and LTO monitoring reacts faster on abrupt decalibrations. The tracking variants of both methods follow random calibration drift with an accuracy of about 0.03(degrees) in the yaw angle.
引用
收藏
页码:1527 / 1545
页数:19
相关论文
共 50 条
  • [21] Improvements to Target-Based 3D LiDAR to Camera Calibration
    Huang, Jiunn-Kai
    Grizzle, Jessy W.
    IEEE ACCESS, 2020, 8 : 134101 - 134110
  • [22] An Effective Camera-to-Lidar Spatiotemporal Calibration Based on a Simple Calibration Target
    Grammatikopoulos, Lazaros
    Papanagnou, Anastasios
    Venianakis, Antonios
    Kalisperakis, Ilias
    Stentoumis, Christos
    SENSORS, 2022, 22 (15)
  • [23] Extrinsic Calibration of a Camera and a 2D LiDAR Using a Dummy Camera With IR Cut Filter Removed
    Kim, Jae-Yeul
    Ha, Jong-Eun
    IEEE ACCESS, 2020, 8 : 183071 - 183079
  • [24] LiDAR-camera Calibration based on the Characteristics of LiDAR Sensors
    Jeong S.
    Kim S.
    Kim J.
    Kim M.
    Journal of Institute of Control, Robotics and Systems, 2024, 30 (05) : 524 - 530
  • [25] Online LiDAR-camera extrinsic parameters self-checking and recalibration
    Wei, Pengjin
    Yan, Guohang
    You, Xin
    Fang, Kun
    Ma, Tao
    Liu, Wei
    Yang, Jie
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (10)
  • [26] A Novel Extrinsic Calibration Method of a Camera-And-LiDAR System
    Cai, Yujian
    Zhan, Yinwei
    Deng, Wanting
    2021 IEEE 7TH INTERNATIONAL CONFERENCE ON VIRTUAL REALITY (ICVR 2021), 2021, : 109 - 116
  • [27] Joint calibration of camera and lidar based on point cloud center
    Kang G.
    Zhang Q.
    Zhang H.
    Xu W.
    Zhang W.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2019, 40 (12): : 118 - 126
  • [28] Spatiotemporal Calibration of Camera-LiDAR Using Nonlinear Angular Constraints on Multiplanar Target
    Yoon, Sanghyun
    Ju, Sungha
    Nguyen, Hieu Minh
    Park, Sangyoon
    Heo, Joon
    IEEE SENSORS JOURNAL, 2022, 22 (11) : 10995 - 11005
  • [29] Extrinsic Calibration of a Monocular Camera and a Single Line Scanning Lidar
    Ye, Quan
    Shu, Leizheng
    Zhang, Wei
    2019 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (ICMA), 2019, : 1047 - 1054
  • [30] Calibration of Camera and Flash LiDAR System with a Triangular Pyramid Target
    Bu, Zean
    Sun, Changku
    Wang, Peng
    Dong, Hang
    APPLIED SCIENCES-BASEL, 2021, 11 (02): : 1 - 18