Two-Dimensional Moran Model: Final Altitude and Number of Resets

被引:2
作者
Aguech, Rafik [1 ]
Abdelkader, Mohamed [1 ]
机构
[1] King Saud Univ, Dept Stat & Operat Res, Riyadh 11451, Saudi Arabia
关键词
random structure; random walk; probability generating function; height; COMBINATORICS;
D O I
10.3390/math11173774
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a two-dimension symmetric random walk with reset. We give, in the first part, some results about the distribution of every component. In the second part, we give some results about the final altitude Zn. Finally, we analyse the statistical properties of NnX, the number of resets (the number of returns to state 1 after n steps) of the first component of the random walk. As a principal tool in these studies, we use the probability generating function.
引用
收藏
页数:22
相关论文
共 18 条
[1]  
Aguech R., 2023, Seminaire Lotharingien de Combinatoire
[2]   Two-Dimensional Moran Model [J].
Althagafi, Asma ;
Abdelkader, Mohamed .
SYMMETRY-BASEL, 2023, 15 (05)
[3]  
[Anonymous], 2009, INTERPLAY COMBINATOR
[4]   Basic analytic combinatorics of directed lattice paths [J].
Banderier, C ;
Flajolet, P .
THEORETICAL COMPUTER SCIENCE, 2002, 281 (1-2) :37-80
[5]  
Banderier C., 2010, P 2010 DISCR MATH TH, P35
[6]  
Banderier C., 2001, Ph.D. Thesis
[7]  
Banderier C, 2017, DISCRETE MATH THEOR, V19
[8]   Moran models and Wright-Fisher diffusions with selection and mutation in a one-sided random environment [J].
Cordero, Fernando ;
Vechambre, Gregoire .
ADVANCES IN APPLIED PROBABILITY, 2023, 55 (03) :701-767
[9]  
de Bruijn N.G., 1972, Graph Theory and Computing, P15
[10]  
Farago A., 2022, J STAT COMPUT SCI, V1, P135