Multimetallic Single-Atom Catalysts for Bifunctional Oxygen Electrocatalysis

被引:33
|
作者
Li, Ruisong [1 ]
Fan, Wenjun [2 ]
Rao, Peng [1 ]
Luo, Junming [1 ]
Li, Jing [1 ]
Deng, Peilin [1 ]
Wu, Daoxiong [1 ]
Huang, Wei [1 ]
Jia, Chunman [1 ]
Liu, Zhongxin [1 ]
Miao, Zhengpei [1 ]
Tian, Xinlong [1 ]
机构
[1] Hainan Univ, Sch Chem Engn & Technol, State Key Lab Marine Resource Utilizat South Chin, Hainan Prov Key Lab Fine Chem, Haikou 570228, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian Natl Lab Clean Energy, State Key Lab Catalysis,iChEM, Dalian 116023, Peoples R China
基金
海南省自然科学基金; 中国国家自然科学基金;
关键词
multimetals; single-atom catalysts; electronicreciprocity; bifunctional electrocatalysis; Zn-airbattery; METAL-AIR BATTERIES; REDUCTION;
D O I
10.1021/acsnano.3c04945
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Multimetallic alloys have demonstrated promising performance for the application of metal-air batteries, while it remains a challenge to design multimetallic single-atom catalysts (MM-SACs). Herein, metal-C(3)N(4 )and nitrogen-doped carbon are employed as cornerstones to synthesize MM-SACs by a general two-step method, and the inherent features of atomic dispersion and the strong electronic reciprocity between the multimetallic sites have been verified. The trimetallic FeCoZn-SACs and quatermetallic FeCoCuZn-SACs are both found to deliver superior oxygen evolution reaction and oxygen reduction reaction activity, respectively, as well as outstanding bifunctional durability. Density functional theory calculations elucidate the crucial contribution of Co sites of FeCoCuZn-SACs to the efficient catalysis of both the ORR and the OER. More importantly, Zn-air batteries with FeCoCuZn-SACs as cathodic catalysts exhibit a high power density (252 mW cm(-2)), high specific capacity (817 mAh g(Zn)(-1)), and considerable stability (over 225 h) for charging-discharging processes. This work provides a visual perspective for the advantages of MM-SACs toward oxygen electrocatalysis.
引用
收藏
页码:18128 / 18138
页数:11
相关论文
共 50 条
  • [21] State-of-the-art single-atom catalysts in electrocatalysis: From fundamentals to applications
    Humayun, Muhammad
    Israr, Muhammad
    Khan, Abbas
    Bououdina, Mohamed
    NANO ENERGY, 2023, 113
  • [22] Single-Atom Catalysts Boosted Electrochemiluminescence
    Wang, Dan-Ling
    Zhao, Wei
    CHEMPLUSCHEM, 2025,
  • [23] Single-Atom Catalysts for Photocatalytic Reactions
    Wang, Qiushi
    Zhang, Dafeng
    Chen, Yong
    Fu, Wen-Fu
    Lv, Xiao-Jun
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (07) : 6430 - 6443
  • [24] Single-Atom Catalysts for Hydrogen Activation
    Gao, Wenwen
    Liu, Shihuan
    Sun, Guangxun
    Zhang, Chao
    Pan, Yuan
    SMALL, 2023, 19 (26)
  • [25] Rare-Earth Single-Atom Catalysts: A New Frontier in Photo/Electrocatalysis
    Wang, Xuan
    Zhu, Yu
    Li, Hao
    Lee, Jong-Min
    Tang, Yawen
    Fu, Gengtao
    SMALL METHODS, 2022, 6 (08)
  • [26] Tuning the Spin Density of Cobalt Single-Atom Catalysts for Efficient Oxygen Evolution
    Li, Zejun
    Wang, Zeyu
    Xi, Shibo
    Zhao, Xiaoxu
    Sun, Tao
    Li, Jing
    Yu, Wei
    Xu, Haomin
    Herng, Tun Seng
    Hai, Xiao
    Lyu, Pin
    Zhao, Meng
    Pennycook, Stephen J.
    Ding, Jun
    Xiao, Hai
    Lu, Jiong
    ACS NANO, 2021, 15 (04) : 7105 - 7113
  • [27] Single-atom catalysts for oxygen evolution reaction in acidic media
    Rouger, Jean
    Cavaliere, Sara
    Jaouen, Frederic
    CURRENT OPINION IN ELECTROCHEMISTRY, 2025, 49
  • [28] Recent progresses in the single-atom catalysts for the oxygen reduction reaction
    Li, Yalong
    Xu, Xiaolong
    Ai, Zizheng
    Zhang, Baoguo
    Shi, Dong
    Yang, Mingzhi
    Hu, Haixiao
    Shao, Yongliang
    Wu, Yongzhong
    Hao, Xiaopeng
    IONICS, 2023, 29 (02) : 455 - 481
  • [29] How does the heteroatoms doping regulate the oxygen electrocatalysis performance of single atom catalysts?
    Xie, Kun
    Lin, Long
    Wang, Pengtao
    Shi, Pei
    Huang, Weiguang
    Guo, Xiangyu
    Zhang, Shengli
    He, Chaozheng
    Frauenheim, Thomas
    MOLECULAR CATALYSIS, 2025, 574
  • [30] Optimal Solution for Modeling Electrocatalysis on Two-Dimensional Single-Atom Catalysts with Grand Canonical DFT
    Liu, Zhen
    Sun, Yi-Fan
    Wang, Yun-Shu
    Zhang, Wei
    Gan, Li-Hua
    Liu, Xiao-Hong
    Zhao, Liu-Bin
    ACS CATALYSIS, 2025,