Enhancing CO2/(light gases) separation performance of Pebax-based mixed-matrix membranes by [BMIM][AC] ionic liquid

被引:6
|
作者
Mahboubi, Reza [1 ]
Joudaki, Ezzatollah [1 ]
Behbahani, Reza Mosayebi [2 ]
Azizi, Navid [3 ]
机构
[1] Arak Univ, Fac Engn, Dept Chem Engn, Arak, Iran
[2] Petr Univ Technol PUT, Ahvaz Fac Petr Engn, Gas Engn Dept, Ahvaz, Iran
[3] Islamic Azad Univ, Dept Chem Engn, Shiraz Branch, Shiraz, Iran
来源
MATERIALS TODAY COMMUNICATIONS | 2023年 / 36卷
关键词
Gas separation; Mixed -matrix membrane; ([BMIM][AC]) ionic liquid; Pebax31657; copolymer; Al; 2; O; 3; nanoparticles; ETHER-BLOCK-AMIDE; NANOCOMPOSITE MEMBRANES; TRANSPORT PROPERTIES; CO2/CH4; SEPARATION; COMPOSITE MEMBRANES; INTERFACIAL DESIGN; GEL MEMBRANES; CO2; PERMEABILITY; PERMEATION;
D O I
10.1016/j.mtcomm.2023.106542
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Incorporating the proper additive with an affinity towards target gases is considered a helpful strategy for simultaneously improving membrane permeability and selectivity. In this research, the superior features of polyether-block-amide polymer (Pebax-1657), 1-Butyl-3-methylimidazolium acetate ([BMIM][AC]) ionic liquid (IL), and aluminum oxide (Al2O3) nanoparticles were blended to produce efficient ternary mixed-matrix membranes for CO2 removal from light gases. The fabricated membranes structures have been evaluated by FTIR3ATR, FESEM, XRD, and DSC analyses. The permeation rates of unmixed CH4, N2, and CO2 gases through the resulting membranes were obtained at 25 degrees C and a feed pressure range of 4-10 bar. The gas permeability results showed that embedding Al2O3 nanoparticles as the loading up to 6 wt% increased the CO2/(light gases) separation performance. Besides, adding the IL into the polymer matrix boosted the membranes gas separation efficiencies caused by the increased CO2 solubility and their fractional free volume. The results also revealed that the resulting membrane containing 15 wt% of [BMIM][AC] IL and 6 wt% of Al2O3 nanoparticles, which has the best gas separation efficiency, is the optimum ternary mixed-matrix membrane. The comparison between the optimized membrane and the unloaded one efficiencies demonstrated that CO2/N2 and CO2/CH4 selectivities, along with the CO2 permeability, rose from 63.40, 19.93, and 115.39 Barrer for the unloaded membrane to 81.18, 25.14, and 166.42 Barrer for the optimum membrane (around 28 %, 26 %, and 44 % increments), at 10 bar and 25 degrees C, respectively.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A three-component mixed-matrix membrane with enhanced CO2 separation properties based on zeolites and ionic liquid materials
    Hudiono, Yeny C.
    Carlisle, Trevor K.
    Bara, Jason E.
    Zhang, Yanfeng
    Gin, Douglas L.
    Noble, Richard D.
    JOURNAL OF MEMBRANE SCIENCE, 2010, 350 (1-2) : 117 - 123
  • [22] Influence of functionalized SiO2 nanoparticles on the morphology and CO2/CH4 separation efficiency of Pebax-based mixed-matrix membranes
    Maryam Ariazadeh
    Zahra Farashi
    Navid Azizi
    Mohammad Khajouei
    Korean Journal of Chemical Engineering, 2020, 37 : 295 - 306
  • [23] Upgrading CO2/CH4 separation performances of Pebax-based mixed-matrix membranes incorporated with core/shell-structured ZIF-L(Co)@ZIF-8 composite nanosheets
    Liu, Yong
    Wu, Chao
    Zhou, Zhongming
    Liu, Wei
    Guo, Hongyu
    Zhang, Baoquan
    JOURNAL OF MEMBRANE SCIENCE, 2022, 659
  • [24] Effect of PEG-MEA and graphene oxide additives on the performance of Pebax® 1657 mixed matrix membranes for CO2 separation
    Shin, Jae Eun
    Lee, Seul Ki
    Cho, Young Hoon
    Park, Ho Bum
    JOURNAL OF MEMBRANE SCIENCE, 2019, 572 : 300 - 308
  • [25] Pebax/MWCNTs-NH2 mixed matrix membranes for enhanced CO2/N2 separation
    Song, Chunfeng
    Mujahid, Muhammad
    Li, Run
    Ahmad, Siraj
    Liu, Qingling
    Zhang, Bing
    Kitamura, Yutaka
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2020, 10 (02): : 408 - 420
  • [26] Modulated UiO-66-Based Mixed-Matrix Membranes for CO2 Separation
    Anjum, M. Waqas
    Vermoortele, Frederik
    Khan, Asim Laeeq
    Bueken, Bart
    De Vos, Dirk E.
    Vankelecom, Ivo F. J.
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (45) : 25193 - 25201
  • [27] Recent progress of fillers in mixed matrix membranes for CO2 separation: A review
    Vinoba, Mad
    Bhagiyalakshmi, Margandan
    Alqaheem, Yousef
    Alomair, Abdulaziz A.
    Perez, Andres
    Rana, Mohan S.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 188 : 431 - 450
  • [28] Determination and optimization of factors affecting CO2/CH4 separation performance in poly(ionic liquid)-ionic liquid-zeolite mixed-matrix membranes
    Singh, Zoban V.
    Cowan, Matthew G.
    McDanel, William M.
    Luo, Yiwei
    Zhou, Rongfei
    Gin, Douglas L.
    Noble, Richard D.
    JOURNAL OF MEMBRANE SCIENCE, 2016, 509 : 149 - 155
  • [29] Thin-film composite mixed-matrix membrane based on polymerizable ionic liquid comb copolymer for CO2 separation
    Kang, Miso
    Min, Hyo Jun
    Kim, Seok-Jhin
    Kim, Jong Hak
    JOURNAL OF MEMBRANE SCIENCE, 2024, 698
  • [30] Mixed-matrix membranes consisting of Pebax and novel nitrogen-doped porous carbons for CO2 separation
    Wang, Yonghong
    Ma, Zhiwei
    Zhang, Xinru
    Li, Jinping
    Zhou, Yi
    Jin, Zhuo
    Li, Nanwen
    JOURNAL OF MEMBRANE SCIENCE, 2022, 644